Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 14, 2021
Accepted February 3, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
바이오접합과 자가결합을 이용한 박테리아 세포막의 위치 특이적 형광 표지
Site-specific Dye-labeling of the Bacterial Cell Surface by Bioconjugation and Self-assembly
부경대학교 화학공학과, 48513 부산광역시 남구 용소로 45
Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Korea
silim@pknu.ac.kr
Korean Chemical Engineering Research, August 2022, 60(3), 398-406(9), 10.9713/kcer.2022.60.3.398 Epub 18 July 2022
Download PDF
Abstract
그람음성균의 외막은 수많은 생물물리학적 및 생화학적 과정이 작용하여 생존력을 유지하도록 설계되어 있는 세포 환경의 가장 바깥 층이다. 세포공학의 발전으로 인해 박테리아의 막 환경을 변경하는 등 유전정보를 원하는 대로 조작 할 수 있게 되었고 이는 박테리아를 특정 목적에 적용시킬 수 있게 하였다. 그중 기능성 분자를 박테리아 외막에 표지 하는 세포 표면공학은 숙주세포가 특정 외부물질이나 자극에 반응하도록 유도하는 전략 중 하나이다. 기능성 펩타이 드 또는 단백질을 세포 표면에 표지하기 위한 방법으로 막 고정 모티프를 융합한 후 세포 내에서 발현하는 방법이 일 반적으로 사용되고 있지만 이는 박테리아 시스템에서 발현할 수 없는 외인성 단백질이나 크기가 큰 단백질에는 적용 할 수 없다는 한계점이 있다. 박테리아 외막의 구성요소에 자연적으로 존재하는 반응성 그룹과 기능성 물질을 화학접 합하는 방법도 있으나 필수 구성 요소의 비특이적 변형으로 인해 세포의 생장이 저해되는 경우가 많다. 본 연구에서는 비천연아미노산 또는 자가결합 도메인을 사용해 대장균의 세포 표면을 부위 특이적으로 형광 표지하는 두 가지의 접 근법을 수행하였다. 첫 번째 접근법은 화학선택적 반응성을 지닌 비천연아미노산이 삽입된 펩타이드를 대장균 표면에 발현하여 위치 특이적으로 형광염료를 접합시키는 방법이다. 두 번째 접근법은 자가결합능력을 지닌 이종 이량체 코 일-코일에서 유래된 α-나선 도메인을 대장균 외막에 발현하고 녹색 형광 단백질이 융합된 상보적인 α-나선 도메인을 막 표면에 특이적으로 고정하는 방법이다. 제시된 방법들은 위치와 시간이 제어된 방식으로 박테리아 외막에 새로운 기능을 부여하는 방법론으로서 유용하다.
The outer membrane of Gram-negative bacteria is the outermost layer of cellular environment in which numerous biophysical and biochemical processes are in action sustaining viability. Advances in cell engineering enable modification of bacterial genetic information that subsequently alters membrane physiology to adapt bacteria to specific purposes. Surface display of a functional molecule on the outer membranes is one of strategies that directs host cells to respond to a specific extracellular matter or stimulus. While intracellular expression of a functional peptide or protein fused to a membrane-anchoring motif is commonly practiced for surface display, the method is not readily applicable to exogenous or large proteins inexpressible in bacteria. Chemical conjugation at reactive groups naturally occurring on the membrane might be an alternative, but often compromises fitness due to non-specific modification of essential components. Herein, we demonstrated two distinct approaches that enable site-specific decoration of the outer membrane with a fluorescent agent in Escherichia coli. An unnatural amino acid genetically incorporated in a surface-exposed peptide could act as a chemoselective handle for bioorthogonal dye labeling. A surface-displayed α-helical domain originating from a part of a selected heterodimeric coiled-coil complex could recruit and anchor a green fluorescent protein tagged with a complementary α-helical domain to the membrane surface in a site- and hetero-specific manner. These methods hold a promise as ondemand tools to confer new functionalities on the bacterial membranes.
Keywords
References
Read TD, Massey RC, Genome Med., 6(11), 109 (2014)
Qing G, Gong N, Chen X, Chen J, Zhang H, Wang Y, Wang R, Zhang S, Zhang Z, Zhao X, Luo Y, Liang XJ, Biophys. Rep., 5(4), 184 (2019)
van Bloois E, Winter RT, Kolmar H, Fraaije MW, Trends Biotechnol., 29(2), 79 (2011)
Kechagia JZ, Ivaska J, Roca-Cusachs P, Nat. Rev. Mol. Cell Biol., 20(8), 457 (2019)
Patel DS, Qi Y, Im W, Curr. Opin. Struct. Biol., 43, 131 (2017)
Varki A, Glycobiology, 27(1), 3 (2017)
Bond PJ, Sansom MSP, Mol. Membr. Biol., 21(3), 151 (2004)
Sousa C, Cebolla A, de Lorenzo V, Nat. Biotechnol., 14(8), 1017 (1996)
Jo JH, Han CW, Kim SH, Kwon HJ, Lee HH, J. Microbiol., 52(10), 856 (2014)
Jose J, Appl. Microbiol. Biotechnol., 69(6), 607 (2006)
Nicchi S, Giuliani M, Giusti F, Pancotto L, Maione D, Delany I, Galeotti CL, Brettoni C, Microb. Cell Fact., 20(1), 33 (2021)
Kang SM, Rhee JK, Kim EJ, Han KH, Oh JW, Fems Microbiol. Lett, 226(2), 347 (2003)
Fasehee H, Rostami A, Ramezani F, Ahmadian G, AMB Express, 8(1), 107 (2018)
Weon BHWC, Jan K, Ashok M, Wilfred C, Appl. Environ. Microbiol., 69(6), 3176 (2003)
Bi X, Yin J, Chen CA, Liu CF, Chem.-Eur. J., 24(32), 8042 (2018)
Hsiao SC, Shum BJ, Onoe H, Douglas ES, Gartner ZJ, Mathies RA, Bertozzi CR, Francis MB, Langmuir, 25(12), 6985 (2009)
Bi X, Yin J, Chen GA, Liu CF, Chem.-Eur. J., 24(32), 8042 (2018)
Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG, Science, 244(4901), 182 (1989)
Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, Yokoyama S, Nat. Struct. Mol. Biol., 10(6), 425 (2003)
Wang L, Xie J, Deniz AA, Schultz PG, J. Org. Chem., 68(1), 174 (2003)
Mehl RA, Anderson JC, Santoro SW, Wang L, Martin AB, King DS, Horn DM, Schultz PG, J. Am. Chem. Soc., 125(4), 935 (2003)
Utterström J, Naeimipour S, Selegård R, Aili D, Adv. Drug Deliv. Rev., 170, 26 (2021)
Walavalkar NM, Gordon N, Williams DC, J. Biol. Chem., 288(5), 3419 (2013)
Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu ZS, Proc. Natl. Acad. Sci. U.S.A., 108(18), 7487 (2011)
Kruis IC, Löwik DWPM, Boelens WC, van Hest JCM, Pruijn GJM, Analyst, 141(18), 5321 (2016)
Paloni JM, Olsen BD, ACS Appl. Polym. Mater., 2(3), 1114 (2020)
Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G, Appl. Microbiol. Biotechnol., 100(20), 8693 (2016)
Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG, J. Am. Chem. Soc., 124(31), 9026 (2002)
Lutz JF, Angew. Chem.-Int. Edit., 46(7), 1018 (2007)
Lim SI, Hahn YS, Kwon I, J. Control. Release, 207, 93 (2015)
Lim SI, Mizuta Y, Takasu A, Hahn YS, Kim YH, Kwon I, J. Control. Release, 170(2), 219 (2013)
Maruani A, Smith MEB, Miranda E, Chester KA, Chudasama V, Caddick S, Nat. Commun., 6(1), 6645 (2015)
Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, Min JH, Hong Y, Choy HE, Min JJ, Theranostics, 6(10), 1672 (2016)
Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Oncologist, 25(2), e321 (2020)
Qing G, Gong N, Chen X, Chen J, Zhang H, Wang Y, Wang R, Zhang S, Zhang Z, Zhao X, Luo Y, Liang XJ, Biophys. Rep., 5(4), 184 (2019)
van Bloois E, Winter RT, Kolmar H, Fraaije MW, Trends Biotechnol., 29(2), 79 (2011)
Kechagia JZ, Ivaska J, Roca-Cusachs P, Nat. Rev. Mol. Cell Biol., 20(8), 457 (2019)
Patel DS, Qi Y, Im W, Curr. Opin. Struct. Biol., 43, 131 (2017)
Varki A, Glycobiology, 27(1), 3 (2017)
Bond PJ, Sansom MSP, Mol. Membr. Biol., 21(3), 151 (2004)
Sousa C, Cebolla A, de Lorenzo V, Nat. Biotechnol., 14(8), 1017 (1996)
Jo JH, Han CW, Kim SH, Kwon HJ, Lee HH, J. Microbiol., 52(10), 856 (2014)
Jose J, Appl. Microbiol. Biotechnol., 69(6), 607 (2006)
Nicchi S, Giuliani M, Giusti F, Pancotto L, Maione D, Delany I, Galeotti CL, Brettoni C, Microb. Cell Fact., 20(1), 33 (2021)
Kang SM, Rhee JK, Kim EJ, Han KH, Oh JW, Fems Microbiol. Lett, 226(2), 347 (2003)
Fasehee H, Rostami A, Ramezani F, Ahmadian G, AMB Express, 8(1), 107 (2018)
Weon BHWC, Jan K, Ashok M, Wilfred C, Appl. Environ. Microbiol., 69(6), 3176 (2003)
Bi X, Yin J, Chen CA, Liu CF, Chem.-Eur. J., 24(32), 8042 (2018)
Hsiao SC, Shum BJ, Onoe H, Douglas ES, Gartner ZJ, Mathies RA, Bertozzi CR, Francis MB, Langmuir, 25(12), 6985 (2009)
Bi X, Yin J, Chen GA, Liu CF, Chem.-Eur. J., 24(32), 8042 (2018)
Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG, Science, 244(4901), 182 (1989)
Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, Yokoyama S, Nat. Struct. Mol. Biol., 10(6), 425 (2003)
Wang L, Xie J, Deniz AA, Schultz PG, J. Org. Chem., 68(1), 174 (2003)
Mehl RA, Anderson JC, Santoro SW, Wang L, Martin AB, King DS, Horn DM, Schultz PG, J. Am. Chem. Soc., 125(4), 935 (2003)
Utterström J, Naeimipour S, Selegård R, Aili D, Adv. Drug Deliv. Rev., 170, 26 (2021)
Walavalkar NM, Gordon N, Williams DC, J. Biol. Chem., 288(5), 3419 (2013)
Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu ZS, Proc. Natl. Acad. Sci. U.S.A., 108(18), 7487 (2011)
Kruis IC, Löwik DWPM, Boelens WC, van Hest JCM, Pruijn GJM, Analyst, 141(18), 5321 (2016)
Paloni JM, Olsen BD, ACS Appl. Polym. Mater., 2(3), 1114 (2020)
Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G, Appl. Microbiol. Biotechnol., 100(20), 8693 (2016)
Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG, J. Am. Chem. Soc., 124(31), 9026 (2002)
Lutz JF, Angew. Chem.-Int. Edit., 46(7), 1018 (2007)
Lim SI, Hahn YS, Kwon I, J. Control. Release, 207, 93 (2015)
Lim SI, Mizuta Y, Takasu A, Hahn YS, Kim YH, Kwon I, J. Control. Release, 170(2), 219 (2013)
Maruani A, Smith MEB, Miranda E, Chester KA, Chudasama V, Caddick S, Nat. Commun., 6(1), 6645 (2015)
Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, Min JH, Hong Y, Choy HE, Min JJ, Theranostics, 6(10), 1672 (2016)
Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Oncologist, 25(2), e321 (2020)