Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 4, 2022
Accepted June 20, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과
Effect of Adding Fermented Organic Matter on the Performance of Benthic Microbial Fuel Cell (BMFC)
순천대학교 화학공학과, 57922 전남 순천시 매곡동 315 1㈜ETIS, 10122 경기도 김포시 고천읍 풍곡리 431-1
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam, 57922, Korea 1ETIS Co, Punggok-ri, Gochon-eup, Gimpo-si, Gyeonggi-Do, 10122, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, November 2022, 60(4), 486-491(6), 10.9713/kcer.2022.60.4.486 Epub 2 November 2022
Download PDF
Abstract
저생 미생물 연료전지(BMFC)는 바다나 호수의 뻘 속에서 저생 미생물이 유기물을 분해하면서 발생시키는 전기를 이용하는 친환경적인 에너지 변환장치다. 본 연구에서는 갯벌에 유입되는 생활 폐수가 저생 미생물 연료전지 성능에 어떤 영향을 주는지 파악하고자, 음식물에 들어가는 유기물들을 발효시켜 갯벌과 혼합해서 BMFC 성능을 비교검토 하였다. 박력분과 비타민(B2, B6, B12, C, D, E)이 많이 함유된 음식물을 발효시켜 첨가함으로써 BMFC 성능을 49% 향상시켰다. 발효 유기물의 양이 증가할수록 최고 출력밀도가 증가하였고, 25~29일 발효시킨 발효 유기물이 BMFC에 최적임을 보였다.
A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B2, B6, B12, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.
Keywords
References
Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 371, 1 (2013)
Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B, J. Environ. Manage., 92(10), 2355 (2011)
Yeung AT, Sep. Purif. Technol., 79(2), 124 (2011)
Pandey B, Fulekar MH, Biol. Med., 4(1), 51 (2012)
Nester EW, Anderson DG, Roberts CE, Pearsall NN, Nester MT, “Microbiology: A Human Perspective,” 7th Edn., McGraw-Hill, New York, (2011).
Fatin SF, Mohd R, Asim AY, Mohamad NMI, Biochem. Eng. J., 172, 108067 (2021)
Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR, Biosens. Bioelectron., 21(11), 2058 (2006)
Reimers CE, Tender LM, Fertig S, Wang W, Environ. Sci. Technol., 35(1), 192 (2001)
Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A, Electrochim. Acta, 53(2), 468 (2007)
Rezaei F, Richard TL, Brennan RA, Logan BE, Environ. Sci. Technol., 41(11), 4053 (2007)
Cheng S, Liu H, Logan BE, Environ. Sci. Technol., 40(1), 364 (2006)
Oh SH, Kwag HW, Lee YJ, Kim YS, Chu CH, Park KP, Korean Chem. Eng. Res., 57(2), 172 (2019)
Karra U, Huang G, Umaz R, Tenaglier C, Wang L, Li B, Bioresour. Technol., 144, 477 (2013)
Cristiani P, Carvalho ML, Guerrini E, Daghio M, Santoro C, Li B, Biogeochemistry, 92, 6 (2013)
Om PA, Mungray S, Chongdar S, Kumar KA, Kumar M, J. Environ. Chem. Eng., 8, 102757 (2020)
Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28(2), 487 (2011)
Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B, J. Environ. Manage., 92(10), 2355 (2011)
Yeung AT, Sep. Purif. Technol., 79(2), 124 (2011)
Pandey B, Fulekar MH, Biol. Med., 4(1), 51 (2012)
Nester EW, Anderson DG, Roberts CE, Pearsall NN, Nester MT, “Microbiology: A Human Perspective,” 7th Edn., McGraw-Hill, New York, (2011).
Fatin SF, Mohd R, Asim AY, Mohamad NMI, Biochem. Eng. J., 172, 108067 (2021)
Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR, Biosens. Bioelectron., 21(11), 2058 (2006)
Reimers CE, Tender LM, Fertig S, Wang W, Environ. Sci. Technol., 35(1), 192 (2001)
Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A, Electrochim. Acta, 53(2), 468 (2007)
Rezaei F, Richard TL, Brennan RA, Logan BE, Environ. Sci. Technol., 41(11), 4053 (2007)
Cheng S, Liu H, Logan BE, Environ. Sci. Technol., 40(1), 364 (2006)
Oh SH, Kwag HW, Lee YJ, Kim YS, Chu CH, Park KP, Korean Chem. Eng. Res., 57(2), 172 (2019)
Karra U, Huang G, Umaz R, Tenaglier C, Wang L, Li B, Bioresour. Technol., 144, 477 (2013)
Cristiani P, Carvalho ML, Guerrini E, Daghio M, Santoro C, Li B, Biogeochemistry, 92, 6 (2013)
Om PA, Mungray S, Chongdar S, Kumar KA, Kumar M, J. Environ. Chem. Eng., 8, 102757 (2020)
Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28(2), 487 (2011)