Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 26, 2022
Accepted March 23, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
용매 추출을 사용한 바닐린 생산공정의 개념 설계
Conceptual Design of Vanillin Production Process Using Solvent Extraction
전남대학교 화학공학부, 61186 광주광역시 북구 용봉로 77
School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
dssong@jnu.ac.kr
Korean Chemical Engineering Research, November 2022, 60(4), 499-505(7), 10.9713/kcer.2022.60.4.499 Epub 2 November 2022
Download PDF
Abstract
본 연구에서는 크라프트 리그닌(Kraft Lignin)을 사용해 바닐린을 생산하는 공정의 개념 설계를 진행하였다. 기존 크라프트 리그닌은 대부분 저품질의 보일러 연료로 사용되거나 폐수로 버려지고 오직 2% 이하의 리그닌만 고품질의 제품으로 정제된다. 버려지는 크라프트 리그닌을 활용하기 위해 새로운 공정을 제안하였다. 기존 바닐린 생산 개념 공정은 NaOH를 사용한 알칼리 산화, 여과, 크로마토그래피, 결정화 단계로 진행됐다. 이중 상용화가 어려운 크로마토그래피를 용매 추출 공정으로 변경하였다. 제안된 용매 추출 공정의 바닐린 회수율 92.9%, 순도 99.5%이며, 이는 기존 크 로마토그래피 공정과 유사한 수준이다. 크로마토그래피와 비슷한 결과를 보이는 용매 추출 공정이 기존 크로마토그래피 공정을 대체할 수 있는 이유를 분석하였다.
This study presents a conceptual design of vanillin production from Kraft lignin. Most of the existing Kraft lignin is used as low-quality boiler fuel or discarded as wastewater, and only 2% or less of lignin has been refined into high-quality products. We propose the process developed in this study to utilize discarded Kraft lignin. The existing vanillin production concept process consisted of alkali oxidation using NaOH, filtration, chromatography, and crystallization. Chromatography, which is difficult to commercialize, was changed to a solvent extraction process. The recovery rate of vanillin of the proposed solvent extraction process is 92.9%, and the purity is 99.5%, which is similar to the existing chromatography process. The reason why the solvent extraction process showing similar results to chromatography can replace the existing chromatography process was analyzed.
Keywords
References
Wongtanyawat N, Lusanandana P, Khwanjaisakun N, Kongpanna P, Phromprasit J, Simasatitkul L, Amornraksa S, Assabumrungrat S, Comput. Chem. Eng., 117, 159 (2018)
Mota MIF, Pinto RPC, Loureiro JM, Rodrigues AE, Sep. Purif. Rev., 45, 227 (2016)
Bomgardner MM, Chem. Eng. News, 94, 38 (2016)
Chattopadhyay P, Banerjee G, Sen SK, J. Clean Prod., 182, 272 (2018)
Bomgardner M, Chem. Eng. News, 92, 14 (2014)
Qu C, Kaneko M, Kashimura K, Tanaka K, Ozawa S, Watanabe T, ACS Sustain. Chem. Eng., 5, 11551 (2017)
Khwanjaisakun N, Amornraksa S, Simasatitkul L, Charoensuppanimit P, Assabumrungrat S, Bioresour. Technol., 299, 122559 (2020)
Mun SM, Utilization of Lignin : Past, Present, Future, 34 (2013).
Laurichesse S, Avérous L, Prog. Polym. Sci, 39, 1266 (2014)
Maeda M, Hosoya T, Yoshioka K, Miyafuji H, Ohno H, Yamada T, J. Wood Sci., 64, 810 (2018)
Gomes E, Rodrigues A, Sep. Purif. Technol., 239, 116551 (2020)
Wang Y, Sun S, Li F, Cao X, Sun R, Ind. Crop. Prod., 116, 116 (2018)
Fache M, Boutevin B, Caillol S, Green Chem., 18, 712 (2016)
Luziatelli F, Brunetti L, Ficca AG, Ruzzi M, Front. Bioeng. Biotechnol., 7, 279 (2019)
McCallum CS, Wang W, Doran WJ, Forsythe WG, Garrett MD, Hardacre C, Leahy JJ, Morgan K, Shin DS, Sheldrake GN, Green Chem., 23, 1847 (2021)
Márquez-Medina MD, Rodríguez-Padrón D, Balu AM, Romero AA, Muñoz-Batista MJ, Luque R, Catalysts, 9, 290 (2019)
Vu TT, Lim YI, Song D, Hwang KR, Kim DK, Biomass Convers. Biorefinery. (2021)
Werhan H, “A Process for the Complete Valorization of Lignin Into Aromatic Chemicals Based on Acidic Oxidation,” (2013).
Gomes ED, Rodrigues AE, Sep. Purif. Technol., 216, 92 (2019)
Vigneault ADKJ, Chornet E, “Base-catalyzed Depolymerization of Lignin Separation of Monomers,” Can. J. Chem. Eng.,(2008).
Bradley JC, Friesen B, Mancinelli J, Bohinski T, Mirza K, Bulger D, Moritz M, Federici M, Rein D, Tchakounte C, Solubilities of Organic Compounds in Organic Solvents,” Nat. Preced.(2010).
Noubigh A, Mgaidi A, Abderrabba M, Provost E, Fürst W, J. Sci. Food Agric., 87, 783 (2007)
Shakeel F, Haq N, Siddiqui NA, Food Chem., 180, 244 (2015)
Ragnar M, Lindgren CT, Nilvebrant NO, J. Wood Chem. Technol., 20, 277 (2000)
Gomes E, Rodrigues A, Sep. Purif. Technol., 247, 116977 (2020)
Mota MI, “Fractionation and Purification of Syringaldehyde and Vanilin from Oxidation of Lignin,” (2017).
Timedjeghdine M, Hasseine A, Binous H, Bacha O, Attarakih M, Fluid Phase Equilib., 415, 51 (2016)
Weiser RB, Geankoplis CJ, Ind. Eng. Chem., 47, 858 (1955)
Rydberg J, Solvent Extraction Principles and Practice, Revised and Expanded, CRC press (2004).
Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A, Fluid Phase Equilib., 373, 72 (2014)
Rydberg J, Solvent Extraction Principles and Practice, Revised and Expanded, CRC press(2004).
Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A, Fluid Phase Equilib., 373, 72 (2014)
Davis RNG, Tao L, Biddy MJ, Tan ECD, Beckham GT, Humbird D, Thompson DN, Roni MS, “Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts 2018 Biochemical Design Case Update,” p. 147 (2018).
Jiang X, de Assis AC, Kollman M, Sun R, Jameel H, Chang HM, Gonzalez R, Green Chem., 22, 7448 (2020)
Mota MIF, Pinto RPC, Loureiro JM, Rodrigues AE, Sep. Purif. Rev., 45, 227 (2016)
Bomgardner MM, Chem. Eng. News, 94, 38 (2016)
Chattopadhyay P, Banerjee G, Sen SK, J. Clean Prod., 182, 272 (2018)
Bomgardner M, Chem. Eng. News, 92, 14 (2014)
Qu C, Kaneko M, Kashimura K, Tanaka K, Ozawa S, Watanabe T, ACS Sustain. Chem. Eng., 5, 11551 (2017)
Khwanjaisakun N, Amornraksa S, Simasatitkul L, Charoensuppanimit P, Assabumrungrat S, Bioresour. Technol., 299, 122559 (2020)
Mun SM, Utilization of Lignin : Past, Present, Future, 34 (2013).
Laurichesse S, Avérous L, Prog. Polym. Sci, 39, 1266 (2014)
Maeda M, Hosoya T, Yoshioka K, Miyafuji H, Ohno H, Yamada T, J. Wood Sci., 64, 810 (2018)
Gomes E, Rodrigues A, Sep. Purif. Technol., 239, 116551 (2020)
Wang Y, Sun S, Li F, Cao X, Sun R, Ind. Crop. Prod., 116, 116 (2018)
Fache M, Boutevin B, Caillol S, Green Chem., 18, 712 (2016)
Luziatelli F, Brunetti L, Ficca AG, Ruzzi M, Front. Bioeng. Biotechnol., 7, 279 (2019)
McCallum CS, Wang W, Doran WJ, Forsythe WG, Garrett MD, Hardacre C, Leahy JJ, Morgan K, Shin DS, Sheldrake GN, Green Chem., 23, 1847 (2021)
Márquez-Medina MD, Rodríguez-Padrón D, Balu AM, Romero AA, Muñoz-Batista MJ, Luque R, Catalysts, 9, 290 (2019)
Vu TT, Lim YI, Song D, Hwang KR, Kim DK, Biomass Convers. Biorefinery. (2021)
Werhan H, “A Process for the Complete Valorization of Lignin Into Aromatic Chemicals Based on Acidic Oxidation,” (2013).
Gomes ED, Rodrigues AE, Sep. Purif. Technol., 216, 92 (2019)
Vigneault ADKJ, Chornet E, “Base-catalyzed Depolymerization of Lignin Separation of Monomers,” Can. J. Chem. Eng.,(2008).
Bradley JC, Friesen B, Mancinelli J, Bohinski T, Mirza K, Bulger D, Moritz M, Federici M, Rein D, Tchakounte C, Solubilities of Organic Compounds in Organic Solvents,” Nat. Preced.(2010).
Noubigh A, Mgaidi A, Abderrabba M, Provost E, Fürst W, J. Sci. Food Agric., 87, 783 (2007)
Shakeel F, Haq N, Siddiqui NA, Food Chem., 180, 244 (2015)
Ragnar M, Lindgren CT, Nilvebrant NO, J. Wood Chem. Technol., 20, 277 (2000)
Gomes E, Rodrigues A, Sep. Purif. Technol., 247, 116977 (2020)
Mota MI, “Fractionation and Purification of Syringaldehyde and Vanilin from Oxidation of Lignin,” (2017).
Timedjeghdine M, Hasseine A, Binous H, Bacha O, Attarakih M, Fluid Phase Equilib., 415, 51 (2016)
Weiser RB, Geankoplis CJ, Ind. Eng. Chem., 47, 858 (1955)
Rydberg J, Solvent Extraction Principles and Practice, Revised and Expanded, CRC press (2004).
Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A, Fluid Phase Equilib., 373, 72 (2014)
Rydberg J, Solvent Extraction Principles and Practice, Revised and Expanded, CRC press(2004).
Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A, Fluid Phase Equilib., 373, 72 (2014)
Davis RNG, Tao L, Biddy MJ, Tan ECD, Beckham GT, Humbird D, Thompson DN, Roni MS, “Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts 2018 Biochemical Design Case Update,” p. 147 (2018).
Jiang X, de Assis AC, Kollman M, Sun R, Jameel H, Chang HM, Gonzalez R, Green Chem., 22, 7448 (2020)