ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 12, 2022
Accepted September 26, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide

충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1 Chungdaero, Seowongu, Cheongju, Chungbuk, 28644, Korea
chshin@chungbuk.ac.kr
Korean Chemical Engineering Research, November 2022, 60(4), 620-629(10), 10.9713/kcer.2022.60.4.620 Epub 2 November 2022
downloadDownload PDF

Abstract

가열 속도, 몰 공간속도, 질화반응온도 등 다양한 실험 조건을 변화하며 바나디움 산화물과 암모니아와의 승온 질화 반응을 통하여 바나디움 산화질화물을 제조하여 특성분석을 수행하였으며 제조된 바나디움 산화질화물 상에서 암모니아 분해반응의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절 분석(XRD), 수소 승온환원(H2-TPR), 산소 존재 하 승온산화 (TPO), 암모니아 탈착 (NH3-TPD), 투과전자현미경(TEM) 분석을 수행하였다. 340℃에서 5 m2 g-1의 낮은 비표면적을 갖는 V2O5의 환원에 의하여 V2O3으로의 변환은 미세기공 형성에 의해 115 m2 g-1 높은 비표면적 값을 보여주었으며 그 이상의 질화반응 온도가 증가함에 따라 소결현상에 의해 지속적인 비표면적의 감소를 초래하였다. 비표면적에 가장 큰 영향을 미치는 질화반응 변수는 반응온도였으며, 단일 상의 VNxOy의 x + y 값은 질화반응온도가 증가함에 따라 1.5에서 1.0으로 근접하였으며 680℃의 높은 반응온도 에서 입방 격자상수 a는 VN 값에 근접하였다. 본 실험 조건 중에 질화반응온도가 가장 높았던 680℃에서 암모니아 전환율은 93%로 나타났으며 비활성화는 관찰되지 않았다.
By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/ nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680℃, the cubic lattice constant a was VN. close to the value. At 680℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

References

Chow J, Kopp RJ, Portney PR, Science, 302, 1528 (2003)
Martha S, Reddy KH, Biswala N, Parida K, Dalton. Trans., 41, 14107 (2012)
Abe JO, Popoola API, Ajenifuja E, Popoola OM, Int. J. Hydrog. Energy, 44, 15072 (2019)
Orcid UU, Oertel D, Diemant T, Minella CB, Bergfeldt T, Orcid RD, Orcid RJB, Fichtner M, ACS Appl. Mater. Interfaces, 10, 1662 (2018)
Zamfirescu C, Dincer I, Fuel Process. Technol., 90, 729 (2009)
Ganley JC, Thomas FS, Seebauer EG, Masel RI, Catal. Lett., 96, 117 (2004)
Yin SF, Xu BQ, Zhu WX, Ng CF, Zhou XP, Au CT, Catal. Today, 93-95, 27 (2004)
Yin SF, Xu BQ, Ng CF, Au CT, Appl. Catal. B: Environ., 52, 287 (2004)
Yin SF, Xu BQ, Zhou XP, Au CT, Appl. Catal. A: Gen., 277, 1 (2004)
Zhang J, Comotti M, Schuth F, Schlogl R, Su DS, Chem. Commun., 17, 1916 (2007)
Pelka R, Moszynska I, Arabczyk W, Catal. Lett., 128, 72 (2009)
Liu Y, Wang H, Li JF, Lu Y, Xue QS, Chen JC, AIChE J., 53, 1845 (2007)
Lu Y, Wang H, Liu Y, Xue QS, Chen L, He MY, Lab Chip, 7, 133 (2007)
Li XK, Ji WJ, Zhao J, Wang SJ, Au CT, J. Catal., 236, 181 (2005)
Choudhary TV, Svammonia DC, Goodman DW, Catal. Lett., 72, 197 (2001)
Abashar MEE, Al-Sughair YS, Al-Mutaz IS, Appl. Catal. A: Gen., 236, 35 (2002)
Hellman A, Honkala K, Remediakis IN, Logammonia DA, Carlsson A, Dahl S, Surf. Sci., 603, 1731 (2009)
Dahl S, Logammonia DA, Egeberg RC, Larsen JH, Phys. Rev. Lett., 83, 1814 (1999)
Dahl S, Tornqvist E, Chorkendorff I, J. Catal., 192, 381 (2000)
Ng PF, Li L, Wang SB, Zhu ZH, Lu GQ, Yan ZF, Environ. Sci. Technol., 41, 3758 (2007)
Klerke A, Klitgaard SK, Fehrmann R, Catal. Lett., 130, 541 (2009)
Deshmukh SR, Mhadeshwar AB, Vlachos DG, Ind. Eng. Chem. Res., 43, 2986 (2004)
Karim AM, Prash V, Mpourmpakis G, Lonergan WW, Frenkel AI, Chen JG, J. Am. Chem. Soc., 131, 12230 (2009)
Bell TE, Torrent-Murciano L, Top. Catal., 59, 1438 (2016)
Podila S, Zaman SF, Alhamed DH, Al-Zahranib YA, Petrov LA, Catal. Sci. Technol., 6, 1496 (2016)
Baek SH, Yun K, Kang DC, An H, Park MB, Shin CH, Min HK, Catalysts, 11(2), 192 (2021)
Srifa A, Okura K, Okanishi T, Muroyama H, Matsui T, Eguchi K, Catal. Sci. Technol., 6, 7495 (2016)
Jolaoso LA, Zaman SF, Podila SH, Driss H, Al-Zahrani AA, Daous MA, Petrov L, Int. J. Hydrog. Energy, 43, 4839 (2018)
Lorenzut B, Montini T, Bevilacqua M, Fornasiero P, Appl. Catal. B: Environ., 125, 409 (2012)
Dewangan K, Patil SS, Joag DS, More MA, Gajbhiye NS, J. Phys. Chem. C, 114, 14710 (2010)
Colling CW, Choi JG, Thomson LT, J. Catal., 160, 35 (1996)
Choi JG, Brenner JR, Colling CW, Demczyk BG, Dunning JL, Thomson LT, Catal. Today, 15, 201 (1992)
Colling CW, Thomson LT, J. Catal., 146, 193 (1994)
Sajkowski DJ, Oyama ST, “Prep. Petro. Chem. Div., 199th ACS Nat. Meeting,” 1990.
Leclercq L, Imura KS, Yoshida ST, Barbee T, Boudart M, “Preparation of Catalysts II,” ed by B. Delmon, Elsevier, NY, 627(1978).
Volpe L, Boudart M, J. Phys. Chem., 90, 4874 (1986)
Leclercq L, Provost M, Pastor H, Grimblot J, Hardy AM, Gengembre L, Leclercq G, J. Catal., 117, 371 (1989)
Levy RB, Boudart M, Science, 181, 547 (1973)
Singelt JH, Yates DJC, Nature Phys. Sci.,, 229, 27 (1971)
Oyama ST, J. Catal., 133, 358 (1992)
Choi JG, Ha J, Hong JW, Appl. Catal. A: Gen., 168(1), 47 (1998)
Volpe L, Oyama ST, Boudart M, Stud. Surf. Sci. Catal., 16, 147 (1983)
Cho DH, Chang TS, Shin CH, Catal. Lett., 67, 163 (2000)
Chenga F, Hec C, Shua D, Chena H, Zhanga J, Tanga S, Finlow DE, Mater. Chem. Phys., 131, 268 (2011)
Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd Edition, Academic Press, New York (1982).
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rousquerol J, Pure Appl. Chem., 57, 603 (1985)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로