Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 4, 2022
Accepted July 14, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
PEM 수전해에서 막과 전극의 내구성에 미치는 구동 온도의 영향
Effect of Operation Temperature on the Durability of Membrane and Electrodes in PEM Water Electrolysis
순천대학교 화학공학과, 57922 전남 순천시 매곡동 315
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam, 57922, Korea
parkkp@scnu.ac.kr
Korean Chemical Engineering Research, February 2023, 61(1), 19-25(7), 10.9713/kcer.2023.61.1.19 Epub 26 January 2023
Download PDF
Abstract
PEM (Proton Exchange Membrane) 수전해의 성능향상에 대해 많은 연구개발이 진행되었으나, 내구성에 대한 연구는 아직 초기 단계라고 할 수 있다. 본 연구는 성능향상을 위해 PEM 수전해 구동 온도를 상승시켰을 때, 수전해 내구성 에 미치는 영향에 대해 연구하였다. 50~80℃ 온도 범위에서 일정 전류 조건으로 구동하면서 전압변화, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, FER (Fluoride Emission Rate) 등을 측정했다. 운전온도 가 상승할수록 열화속도가 증가했다. 50~65℃에서는 IrO2 전극 촉매 열화가 PEM 수전해 셀의 내구성에 주로 영향을 주었다. 80℃에서는 고분자 막과 전극 열화가 비슷하게 진행되어 short 저항이 1.0 kΩ·cm2 이하로 감소하면서 shorting 현상에 의해 구동한지 144시간 만에 성능이 초기의 약 1/3로 감소하였다.
Although a lot of research and development has been conducted on the performance improvement of PEM (Proton Exchange Membrane) water electrolysis, the research on durability is still in early stage. This study investigated effect of temperature on the water electrolysis durability when driving temperature of the PEM water electrolysis was increased to improve performance. Voltage change, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, and FER (Fluoride Emission Rate) were measured while driving under a constant current condition in a temperature range of 50~80℃. As the operating temperature increased, the degradation rate increased. At 50~65℃, the degradation of the IrO2 electrocatalyst mainly affected the durability of the PEM water electrolysis cell. At 80℃, the polymer membrane and electrode degradation proceeded similarly, and the short resistance decreased to 1.0 kΩ·cm2 or less, and the performance decreased to about 1/3 of the initial stage after 144 hours of operation due to the shorting phenomenon.
References
Alexander B, Hartmut S, Renew. Sust. Energ. Rev., 82, 2440 (2018)
Ju HK, Badwal S, Giddey S, Appl. Energy, 231(1), 502 (2018)
Kumar SS, Himabindu V, Mater. Sci. Technol., 2(3), 442 (2019)
Grigoriev SA, Millet P, Fateev VN, J. Power Sources, 177(2), 281 (2008)
Millet P, Ngameni R, Grigoriev SA, Mbemba N, Brisset F, Ranjbari A, Etiévant C, Int. J. Hydrog. Energy, 35(10), 5043 (2010)
Carmo M, Fritz DL, Mergel J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
Kim TH, Lee JH, Cho GJ, Park KP, Korean Chem. Eng. Res., 44(6), 597 (2006)
Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28(2), 487 (2011)
Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, Teschner D, Strasser P, J. Am. Chem. Soc., 138(38), 12552 (2016)
Siracusano S, Baglio V, Dijk N Van, Merlo L, Aricò AS, Appl. Energy, 192(15), 477 (2017)
Collier A, Wang H, Yaun X, Zhang J, Wilison DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D, J. Power Sources, 326(15), 120 (2016)
Chandesris MV, Médeau N, Guillet S, Chelghoum D, Thoby F, Fouda O, Int. J. Hydrog. Energy, 40(3), 1353 (2015)
Oh SH, Lim DH, Park KP, Korean Chem. Eng. Res., 59(1), 11 (2021)
Zhiani M, Maidi S, Taghiabadi M, FUEL CELLS, 13(5), 946 (2013)
Oh SH, Cho WJ, Lim DH, Yoo DG, Park KP, Korean Chem. Eng. Res., 59(3), 333 (2021)
Bessarabov D, Wang H, Li H, Zhao N, “PEM Electrolysis for Hydrogen Production: Principles and Applications,” Boca Raton, FL, USA: CRC Press, 2015.
Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48, 3945 (2003)
Mench MM, Emin CK, Veziroglu TN, “Polymer Electrolyte Fuel Cell Degradation,” Academic Press, Oxford, Waltham, MA, 64-77, (2012).
Song JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(1), 68 (2013)
Lee H, Kim TH, Son IJ, Lee JH, Lim TW, Park KP, Korean Chem. Eng. Res., 47(4), 441 (2009)
Ju HK, Badwal S, Giddey S, Appl. Energy, 231(1), 502 (2018)
Kumar SS, Himabindu V, Mater. Sci. Technol., 2(3), 442 (2019)
Grigoriev SA, Millet P, Fateev VN, J. Power Sources, 177(2), 281 (2008)
Millet P, Ngameni R, Grigoriev SA, Mbemba N, Brisset F, Ranjbari A, Etiévant C, Int. J. Hydrog. Energy, 35(10), 5043 (2010)
Carmo M, Fritz DL, Mergel J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
Kim TH, Lee JH, Cho GJ, Park KP, Korean Chem. Eng. Res., 44(6), 597 (2006)
Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28(2), 487 (2011)
Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, Teschner D, Strasser P, J. Am. Chem. Soc., 138(38), 12552 (2016)
Siracusano S, Baglio V, Dijk N Van, Merlo L, Aricò AS, Appl. Energy, 192(15), 477 (2017)
Collier A, Wang H, Yaun X, Zhang J, Wilison DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D, J. Power Sources, 326(15), 120 (2016)
Chandesris MV, Médeau N, Guillet S, Chelghoum D, Thoby F, Fouda O, Int. J. Hydrog. Energy, 40(3), 1353 (2015)
Oh SH, Lim DH, Park KP, Korean Chem. Eng. Res., 59(1), 11 (2021)
Zhiani M, Maidi S, Taghiabadi M, FUEL CELLS, 13(5), 946 (2013)
Oh SH, Cho WJ, Lim DH, Yoo DG, Park KP, Korean Chem. Eng. Res., 59(3), 333 (2021)
Bessarabov D, Wang H, Li H, Zhao N, “PEM Electrolysis for Hydrogen Production: Principles and Applications,” Boca Raton, FL, USA: CRC Press, 2015.
Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48, 3945 (2003)
Mench MM, Emin CK, Veziroglu TN, “Polymer Electrolyte Fuel Cell Degradation,” Academic Press, Oxford, Waltham, MA, 64-77, (2012).
Song JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(1), 68 (2013)
Lee H, Kim TH, Son IJ, Lee JH, Lim TW, Park KP, Korean Chem. Eng. Res., 47(4), 441 (2009)