Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 5, 2022
Revised October 24, 2022
Accepted October 31, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향
Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC
Abstract
PEMFC(고분자 전해질 막 연료전지) cathode 촉매로 Pt-Co/C가 내구성 향상 때문에 최근에 많이 사용되는 추세이
다. 연료전지에서 전극과 전해질은 상호 간에 성능과 내구성 면에서 밀접하게 영향을 준다. Pt/C 전극 촉매에서 Pt-Co/
C로 대체되었을 때 고분자 전해질막의 전기화학적 내구성에 미치는 영향에 대해서 연구하였다. PEMFC 고분자막의
전기화학적 가속 열화 과정에서 Pt-Co/C MEA(막전극접합체)의 내구성이 Pt/C MEA 내구성보다 높았다. FER (불소
유출속도)와 수소투과도를 분석한 결과 Pt-Co/C MEA의 고분자막 열화속도가 Pt/C MEA보다 낮음을 보였다. OCV(개회
로전압) holding 과정에서 Pt-Co/C 전극의 활성면적 감소속도가 Pt/C 전극보다 낮고, 고분자막에 석출되는 Pt 양도 PtCo/C MEA가 Pt/C MEA보다 작았다. 고분자막 내부의 Pt는 라디칼을 생성해서 고분자막을 열화시킴으로 Pt 석출 속
도가 높은 Pt/C MEA의 고분자막 열화속도가 높게 나타났다. Pt-Co/C 촉매를 사용하면 전극 내구성도 향상되고, 고분자
막에 석출되는 Pt양도 감소해서 고분자막의 전기화학적 내구성을 향상시켰다.
Abstract − As a PEMFC (Polymer Exchange Membrane Fuel Cell) catho
As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been
widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each
other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane
when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane
Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of
PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown
that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit
Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C
electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside
the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/
C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode
durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the
electrochemical durability of the membrane.
References
Z., “Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review,” Fuel rocessing Technology, 179, 203-228(2018).
2. Department of Energy, https://www.energy.gov(2016).
3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html(2016).
4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
5. Ministry of Science and Technology of the People’s Republic of China, http://en.most.gov.cn/eng/index.htm(2016).
6. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals
Technology and Applications, Vol. 3, John Wiley & Sons Ltd.,Chichester, England, 611-612(2003).
7. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S.,“Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 140(12), 2872-2877(1993).
8. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D.P., “Aging Mechanism and lifetime of PEFC and DMFC,” J.Power Sources, 127(1-2), 127-134(2004).
9. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., “Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack,” Int. J. Hydrog. Energy, 31(13), 1838-1854(2006).
10. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., “Nafion Degradation in PEFCs from End Plate Iron Contamination,”Electrochim. Acta, 48(11), 1543-1548(2003).
11. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., “Durability of PEFCs at High Humidity Conditions,” J. Electrochem. Soc., 152(1), A104-A113(2005).
12. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C.and Tisack, M. E., “Advanced Materials of Improved PEMFC Performance And Life,” J. Power Sources, 131(1-2), 41-48(2004).
13. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. and Stonehart, P., “Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells,” J. Electrochem.Soc., 141(10), 2659-2668(1994).
14. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K.,Kohyama, M. and Yasuda, K., “Analytical TEM Study of Pt Parti-cle Deposition in the Proton-exchange Membrane of a Membra-neelectrode-Assembly,” J. Power Sources, 159(1), 461-467(2006).
15. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., “The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test,” J. Power Sources, 164(1), 126-133(2006).
16. Yoshida, T. and Kojima, K., “Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society,” Electrochem.Soc. Interface, 24 45(2015).
17. Papadias, D. D., Ahluwalia, R. K., Myers, K. D., More, K. L.,Cullen, D. A., Sneed, B. T., Neyerlin, K. C., Mukundan, R. and Borup, R. L., “Durability of Pt-Co Alloy Polymer Electrolyte Fuel Cell Cathode Catalysts under Accelerated Stress Tests,” J. Electrochem. Soc., 165(6), F3166-F3177(2018).
18. Ishiguro, N., Kityakarn, S., Sekizawa, O., Uruga, T., Matsui, H.,Taguchi, M., Nagasawa, K., Yokoyama, T. and Tada, M, “Kinetics and Mechanism of Redox Processes of Pt/C and Pt3Co/C Cathode Electrocatalysts in a Polymer Electrolyte Fuel Cell during an Accelerated Durability Test,” J. Phys. Chem. C, 120, 19642-19651(2016).
19. Jung, J., Hyun S. Park, J. Han, H. J., Kim, D., Henkens, M., Yoo, S. J., Kim, J. Y., Lee, S. Y. Song, K. H., Park, H. Y. and Jang, J. H.,
“Effect of the Fabrication Condition of Membrane Electrode Assemblies with Carbon-supported Ordered PtCo Electrocatalyst on the Durability of Polymer Electrolyte Membrane Fuel Cells,”Int. J. Hydrog. Energy, 45, 32834-32843(2020).
20. Ying, J., Li, J.,Jiang, G., Cano, Z. P., Ma, Z., Zhong, C., Su, D.,Chen, Z., “Metal-organic Frameworks Derived Platinum-cobalt Bimetallic Nanoparticles in Nitrogen-doped Hollow Porous Carbon Capsules as a Highly Active and Durable Catalyst for Oxygen Reduction Reaction,” Applied Catalysis B: Environmental, 225,496-503(2018).
21. Abkar, Z., Ojani, R., Raoof, J. B.,Roudbari, M. N., “Stable and High-performance N-micro/mesoporous Carbon-supported Pt/Co Nanoparticles-GDE for Electrocatalytic Oxygen Reduction in PEMFC,” Int. J. of Hydro. Ener., 47(44),19252-1926(2022).
22. Frano Barbir, “PEM Fuel Cells: Theory and Practice,” Elsevier Academic Press, Amsterdam(2005).
23. Oh, S. H., Cho, W. J., Lim, D. H. Yoo, D. G. and Park, K. P.,“Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane,” Korean Chem. Eng. Res., 59(3), 333-338(2021).
24. Song, J. H., Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K.,Ko, J. J. and Park, K. P., “Effect of Membrane Degradation on the Electrode Degradation in PEMFC,” Korean Chem. Eng. Res.,51(3), 325-329(2013).
25. Yoo, D. G. and Park, K. P., “A Study on Irreversible Degradation through OCV Reduction and Recovery Behavior in the Electrochemical Degradation Process of PEMFC Polymer Membrane,”Korean Chem. Eng. Res., 60(2), 217-222(2022).
26. Akita,T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K.,Kohyama, M., Yasuda, K., “Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membraneelectrode-assembly,” J. Power Sources, 159, 461-467(2006).
27. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P.,“Decrease in Hydrogen Crossover through Membrane of Polymer
Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test,”