Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 17, 2022
Revised December 28, 2022
Accepted January 13, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서
A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode
Abstract
우리는 금속 산화물 CuO nanoparticles (CuO NPs)과 전도성 고분자 Polyaniline (PANI)가 접목된 CNT fiber 유연
전극(CuO NPs/PANI/CNT fiber 전극)을 개발하여 H2O2 검출용 비효소적 전기화학센서에 적용하였다. CNT fiber 표
면 위에 PANI와 CuO NPs을 전기화학적 합성/증착을 통해 제작된 CuO NPs/PANI/CNT fiber 전극은 주사전자 현미
경(SEM)과 에너지분산형 분광분석법(EDS)을 통해 표면 분석이 수행되었으며, 순환전압 전류법(CV)과 전기화학 임피
던스법(EIS), 시간대전류법(CA)을 이용하여 전기화학적 특성 및 H2O2 센싱 성능이 분석되었다. CuO NPs/PANI/CNT
fiber 전극은 대조군인 bare CNT fiber 전극과 비교하여 약 4.78배의 유효 표면적 증가를 보였으며, 약 8.33배의 전자
전달 저항(Ret) 감소로 인한 우수한 전기 전도성 및 효율적인 전자전달 등의 전기화학적 특성을 나타냈다. 이런 향상된
전극 특성은 CuO NPs와 PANI의 접목을 통한 시너지 효과에 기인한 것으로, 결과적으로 H2O2 검출에 대한 센싱 성
능이 개선되었다.
In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline
(PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT
fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using
an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode
were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical
characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and
chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode
showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads
to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These
improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a
result, this electrode enhanced the H2O2 sensing performance
Keywords
References
2. Othmani, A., Kouki, Z., Kouass, S., Touati, F. and Dhaouadi, H.,“A Highly Sensitive Hydrazine and Hydrogen Peroxide Nonenzymatic Sensor Based on CuO Nanoplatelets,” J. Mater. Sci.Mater. Electron., 32, 3566-3576(2021).
3. Song, M. J., Hwang, S. W. and Whang, D., “Non-enzymatic Electrochemical CuO Nanoflowers Sensor for Hydrogen Peroxide Detection,” Talanta, 80, 1648-1652(2010).
4. Yang, J., Jiang, L. C., Zhang, W. D. and Gunasekaran, S., “A Highly Sensitive Non-enzymatic Glucose Sensor Based on a Simple Two-step Electrodeposition of Cupric Oxide (CuO) Nanoparticles Onto Multi-walled Carbon Nanotube Arrays,” Talanta, 82,25-33(2010).
5. Jiangtao, D., Zhang, X., Yong, Z., Zhang, Y., Li, D., Li, R. and Li, Q., “Carbon-nanotube Fibers for Wearable Devices and Smart Textiles,” Adv. Mater., 28, 10529-10538(2016).
6. Jung, C., Liu, W., Hao, H., Wang, H., Meng, F. and Lau, D.,“Regenerated and Rotation-induced Cellulose-wrapped Oriented CNT Fibers for Wearable Multifunctional Sensors,” Nanoscale,12, 16305-16314(2020).
7. Cho, S. Y., Yu, H., Choi, J., Kang, H., Park, S., Jang, J. S., Hong,H. J., Kim, I. D., Lee, S. K., Jeong, H. S. and Jung, H. T., “Continuous Meter-scale Synthesis of Weavable Tunicate Cellulose/carbon Nanotube Fibers for High Performance Wearable Sensors,” ACS Nano, 13, 9332-9341(2019).
8. Shoaie, N., Daneshpour, M., Azimzadeh, M., Mahshid, S., Khoshfetrat, S. M., Jahanpeyma, F., Gholaminejad, A., Omidfar, K. and
Foruzandeh, M., “Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: a Review on Recent Adbances,” Microchim. Acta, 186, 465(2019).
9. Liu, T., Guo, Y., Zhang, Z., Miao, Z., Zhang, X. and Su, Z.,“Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Nonenzymatic Electrochemical Detection of H2O2 and Glucose,”Sens. Actuators B, 286, 370-376(2019).
10. Huang, J., Zhu, Y., Zhong, H., Yang, X. and Li, C., “Dispersed CuO Nanoparticles on a Silicon Nanowire for Improved Performance of enzymatic H2O2 Detection,” ACS Appl. Mater. Interfaces,6, 7055-7062(2014).
11. Ghanbari, K. and Babaei, Z., “Fabrication and Characterization of Non-enzymatic Glucose Sensor Based on Ternary NiO/CuO/Polyaniline Nanocomposite,” Anal. Biochem., 498, 37-46(2016).
12. Jagadeesan, M. S., Movlaee, K., Krishnakumar, T., Leonardi, S.G. and Neri, G., “One-step Microwave-assisted Synthesis and Characterization of Novel CuO Nanodisks for Non-enzymatic Glucose Sensing,” J. Electroananl. Chem., 835, 161-169(2019).
13. Miao, X. M., Yuan, R., Chai, Y. Q., Shi, Y. T. and Yuan, Y. Y.,“Direct Electocatalytic Reduction of Hydrogen Peroxide Based on Nafion and Copper Oxide Nanoparticles Modified Pt Electrode,” J. Electoanal. Chem., 612, 157-163(2008).
14. Yoon, S. S., Ramadoss, A., Saravanakumar, B. and Kim, S. J.,“Novel Cu/CuO/ZnO Hybrid Hierarchical Nanostructures for Non-enzymatic Glucose Sensor Application,” J. Electroanal. Chem.,717-718, 90-95(2014).
15. Ma, X., Tang, K., Yang, M., Shi, W. and Zhao, W., “A Controllable Synthesis of Hollow Pumkin-like CuO/Cu2O Composites for Ultrasensitive Non-enzymatic Glucose and Hydrogen Peroxide Biosensors,” New J. Chem., 44, 20411-20418(2020).
16. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York (1980).
17. Torz-Piotrowska, R., Wrzyszczyński, A., Paprocki, K., Szreiber,M., Uniszkiewicz, C. and Staryga, E., “The Application of CVD Diamond Films in Cyclic Voltammetry,” J. Achiev. Mater. Manuf.Eng., 37, 486-491(2009).
18. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K.,Rao, V. K. and Vijayaraghavan, R., “Immobilization of Acetylcholineesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents,” Biosens. Bioelectron., 25, 832-838(2009).
19. Song, M. J., “Investigation on Electrochemical Property of CNT Fibers and Its Non-enzymatic Sensing Performance for Glucose Detection,” Korean Chem. Eng. Res., 59, 606-610(2021).
20. Miao, X. M., Yuan, R., Chai, Y. Q., Shi, Y. T. and Yuan, Y. Y.,“Direct Electrocatalytic Reduction of Hydrogen Peroxide Based on Nafion and Copper Oxide Nanoparticles Modified Pt Electrode,” J. Electroanal. Chem., 612, 157-163(2008).
21. Chakraborty, P., Dhar, S., Debnath, K. and Mondal, S. P., “Glucose and Hydrogen Peroxide Dual-mode Electrochemical Sensing Using Hydrothermally Grown CuO Nanorods,” J. Electroanal.Chem., 833, 213-220(2019).
22. Wang, M., Ma, J., Guan, X., Peng, W., Fan, X., Zhang, G., Zhang, F. and Li, Y., “A Novel H2O2 Electrochemical Sensor Based on
NiCo2S4 Functionalized Reduced Graphene Oxide,” J. Alloys Compd., 784, 827-833(2019).
23. Kang, M., Lee, Y., Jung, H., Shim J. H., Lee, N. S., Baik, J. M.,Lee, S. C., Lee, C. and Kim, M. H., “Single Carbon Fiber Decorated with RuO2 Nanorods as a Highly Electrocatalytic Sensing Element,” Anal. Chem., 84, 9485-9491(2012).
24. Tang, Y., Allen, B. L., Kauffman, D. R. and Star A., “ElectrocataLytic Activity of Nitrogen-doped Carbon Nanotube Cups,” J.Am. Chem. Soc., 131, 13200-13201(2009).
25. Ping, J., Ru, S., Fan, K., Wu, J. and Ying, Y., “Copper Oxide Nanoparticles and Ionic Liquid Modified Carbon Electrode for the Non-enzymatic Electrochemical Sensing of Hydrogen Peroxide,” Microchim. Acta, 171, 117-123(2010).
26. Chen, T., Cai, Z., Yang, Z., Li, L, Sun, X., Huang, T., Yu, A, Kia,H. G. and Peng, H, “Nitrogen-doped Carbon Nanotube Composite Fiber with a Core-sheath Structure for Novel Electrodes,”Adv. Mater., 23, 4620-4625(2011).