Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 30, 2023
Revised July 12, 2023
Accepted July 13, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
고분자전해질 연료전지에서 박막의 화학적 내구성 평가
Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells
Abstract
최근 고분자 전해질 연료전지(PEMFC)에서 고분자 막의 연구개발은 가격 저감과 성능 향상을 위해 박막화하는 방
향으로 진행되고 있다. 그리고 상용차용 수소 전기 차량 수요가 증가하고 있는데, 승용차용보다 내구성이 5배 증가해야
한다. 막의 두께가 얇아짐에도 불구하고 내구성은 5배 증가해야 하므로, 막의 내구성 향상이 더 중요해진 상황이다. 가
속 내구 평가 시간도 단축해야하기 때문에 기존 프로토콜에서 공기 대신 산소를 사용한 프로토콜을 10 µm 박막에 적
용해 내구성을 평가하였다. 가속 내구 평가(개회로 전압 유지)는 720시간에 종료하였다. 공기를 사용한 미국 에너지부
(DOE) 프로토콜을 사용했다면 약 1,500시간의 내구성으로 운전시간 450,000 km 수명을 예상한다. 화학적 내구 평가
중에 전극의 활성 면적이 51% 감소해 촉매 열화가 막 내구성 약화에 영향을 준 것으로 판단되고, 촉매 열화 속도를
감소시키면 막 내구성이 증가할 것으로 예상된다.
Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are
progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered
vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for
passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five
times, so the improvement of the durability of the membranes has become more important. Since the acceleration
durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol
was applied to a 10 µm thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage
holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of
450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability
evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on
membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.
References
2. Watanabe, M., Uchida, H. and Emori, M., “Analyses of SelfHumidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells,” J. Electrochem. Soc., 145, 1137(1998).
3. Wang, L., Advani, S. G. and Prasad, A. K.,“Degradation Reduction of Polymer Electrolyte Membranes Using CeO2 as a Free radical Scavenger in Catalyst Layer,” Electrochimica Acta, 109,775-780(2013).
4. Zhao, D., Yi, B. L., Zhang, H. M., Yu, H. M., Wang, L., Ma, Y.W. and Xing, D. M., “Cesium Substituted 12-tungstophosphoric (CsxH3−xPW12O40) Loaded on Ceria-degradation Mitigation in Polymer Electrolyte Membrane,” J. Power Sources, 190, 301-306(2009).
5. Lai, Y. H., Mittelsteadt, C. K., Gittleman, C. S. and Dillard, D.A., “Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling,” J. Fuel Cell Sci. Technol.,6(2), 13(2009).
6. Spernjak, D., Mukherjee, P. P., Mukundan, R., Davey, J., Hussey,D. S., Jcobson, D. and Borup, R. L., “Measurement of Water Content in Polymer Electrolyte Membranes Using High Resolution Neutron Imaging,” ECS Trans., 33(1), 1451-1456(2010).
7. MacKinnon, S. M., Fuller, Coms, F. D., Schoeneweiss, M. R.,Gittleman, C. S., Lai, Y., Jiang, H. R. and Brenner, A. M., “Fuel Cells–Proton Exchange Membrane Fuel Cells | Membranes:Design and Characterization,” Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 741-754(2009).
8. Craig, S., Gittleman, C. S., Coms, F. D. and Lai, Y. H., “Polymer Electrolyte Fuel Cell Degradation-Chapter 2 - Membrane Durability: Physical and Chemical Degradation,” Academic Press, Boston,2012, Pages 15-88.
9. Crum, M. and Liu, W., “Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability,”ECS Trans., 3(1), 541-550(2006).
10. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, “DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells.”
11. Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., “Measurement of Hydrogen Crossover during PEMFC
Operation,” Korean Chem. Eng. Res., 53(4), 412-416(2015).
12. Endoh, E., Terazono, S., Widjaja, H. and Takimoto, Y., “Degradation Study of MEA for PEMFCs under Low Humidity Conditions,” Electrochem, Solid-State Lett., 7, 145-161(2004).
13. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., “Cell Evaluation and Analysis
Protocol Guidline,” NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January
30(2014).
14. Oh, S. H., Cho, W. J., Lim, D. H., Yoo, D. K. and Park, K. P.,“Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane,” Korean Chem. Eng. Res., 59(3), 333-338(2021).
15. Oh, S. H., Yun, J. W., Lee, D. W. and Park, K. P., “Comparison of Measurement Method of Hydrogen Permeability in Proton Exchange Membrane Fuel Cell,” Korean Chem. Eng. Res., 57(4),507-511(2019).
16. Oh, S. H., Gwon, J. H., Lim, D. H. and Park, K. P., “Study on the Short Resistance and Shorting of Membrane of PEMFC,”Korean Chem. Eng. Res., 59(1), 6-10(2021).
17. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T.W. and Park, K. P., “Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test,”Korean J. Chem. Eng., 28(2), 487-491(2011).