ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 8, 2023
Revised June 20, 2023
Accepted June 28, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

납사분해 공정 내 열 교환 네트워크 경제적-환경영향 평가

Evaluation of Economic-Environmental Impact of Heat Exchanger Network in Naphtha Cracking Center

계명대학교 화학공학전공 42601 대구광역시 달서구 달구벌대로 1095
School of Chemical Engineering, Keimyung University, 1095, Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Korea
yuchan.ahn@kmu.ac.kr
Korean Chemical Engineering Research, August 2023, 61(3), 378-387(10), 10.9713/kcer.2023.61.3.378 Epub 31 August 2023
downloadDownload PDF

Abstract

석유화학은 전체 산업에너지 소비량 중 약 30%를 소비하는 에너지 다소비 업종으로써 대표적인 이산화탄소(carbon dioxide, CO2) 배출원이다. 그 중 에틸렌, 프로필렌, 프로판 및 혼합 C4를 생산하는 납사 분해 공정(naphtha cracking center, NCC)은 많은 양의 에너지를 소비하고 상당한 양의 CO2 를 배출한다. 이러한 이유로 경제성과 환경적 측면에서의 효율성을 보장하기 위해 에너지 사용량 및 환경 영향 인자 감소를 목표로 하는 통합 기술경제적-환경영향 평가가 필 요하다. 본 연구는 핀치분석에 근거하여 기존 NCC에서 사용되는 열 교환망의 효율성을 분석하고 이를 통해 에너지 사 용량을 감축 시킬 수 있는 개선안을 선정하는 것을 목표로 한다. 공정 내 유틸리티 소비량을 줄이기 위하여 고온 스트 림과 저온 스트림 사이를 고려한 최적의 열 교환망을 도출하고, 유틸리티 사용량 감소와 열교환기 설치 비용 증가 사 이의 트레이드 오프를 고려하여 경제성 평가를 진행하였다. 또한, 환경적 측면을 고려하여 감소된 CO2 배출에 대한 환 경영향평가를 실시하였고, 경제적-환경 영향 평가는 투자된 자금을 회수하는 회수기간을 사용하여 실제 공정을 바탕으로 적용 가능성이 있는 에너지 절감안을 도출하였다. 경제적-환경영향평가를 고려한 결과 경제성만을 고려한 부분에서는 각 사례별로 4.29개월, 3.21개월, 3.39개월로 나타났고, 경제적-환경 통합 평가의 경우에는 각 사 례별로 4.24개월, 3.17 개월, 3.35개월로 각각의 회수기간을 보였다. 이러한 결과는 환경영향평가를 포함하지 않았을 때와 포함하였을 때 모 두 동등하게 나타났다. 추가로 주요한 요소가 회수기간에 어느정도 영향을 미치는지 확인하기 위해 각 사례별 민감도 분석을 진행하였다. 민감도 분석결과 열 교환기 비용이 전체적인 비용에 영향을 미치는 주요 원인으로 확인되었다.

Petrochemical is an energy consuming industry that consumes about 30% of total industrial energy consumption and is a representative carbon dioxide (CO2) emission source. Among them, the Naphtha Cracking Center (NCC), which produces ethylene, propylene, propane and mixed C4, consumes large amounts of energy and emits significant amounts of CO2. For this reason, an integrated techno economic- environmental impact assessment aimed at reducing energy consumption and environmental impact factors is necessary to ensure efficiency in terms of economics and environment. This study aims to analyze the efficiency of the heat exchanger network used in the existing NCC base on the pinch analysis and select an improvement plan that can reduced energy consumption. In order to reduces the utility consumption in the process, an optimal heat exchanger network considering the high-temperature and lowtemperature stream was derived, and the economic evaluation was conducted by considering the trade-off between the reduction in utility consumption and the increase in heat exchanger installation cost. In addition, an environmental impact assessment was conducted on the reduced CO2 emission in consideration of the environmental aspect, and the economic environmental impact assessment used the payback period to recover the invested funds to come up with an energy saving plan that can be applied based on the actual process. As a result of considering the economic-environmental impact assessment, when the environmental impact assessment was not considered, it was 4.29 months, 3.21 months.and 3.39 months for each case, and when considering the environmental impact assessment, it was 4.24 months, 3.17 months, and 3.35 months for each case. These results appeared equally both when the environmental impact assessment was not include and when it was include. In addition, a sensitivity analysis was conducted for each case to determine how important factors affect the payback period. As a result of the sensitivity analysis, the cost of the heat exchanger was identified as a major factor influencing the overall cost.

References

1. Kanagaraj, S., Varanda, F. R., Zhil’tsova, T. V., Oliveira, M. S.,and Simões, J. A., “Mechanical Properties of High Density Polyeth-ylene/carbon Nanotube Composites,” Composites Science and Technology 67, 3071(2007).
2. Luyt, A., Molefi, J. and Krump, H., “Thermal, Mechanical and Electrical Properties of Copper Powder Filled Low-density and
Linear Low-density Polyethylene Composites,” Polymer Degradation and Stability 91, 1629(2006).
3. Hotta, S. and Paul, D., “Nanocomposites Formed From Linear Low Density Polyethylene and Organoclays,” Polymer 45, 7639(2004).
4. Kim, S. and Oh, S., “Impact of us Shale Gas on the Vertical and Horizontal Dynamics of Ethylene Price,” Energies 13, 4479(2020).
5. Jung, S., Jung, H. and Ahn, Y., “Optimal Economic–environmental Design of Heat Exchanger Network in Naphtha Cracking
Center Considering Fuel Type and co2 Emissions,” Energies 15,9538(2022).
6. Matar, S. and Hatch, L. F., Chemistry of Petrochemical Processes,Elsevier(2001).
7. Geng, Z., Qin, L., Han, Y. and Zhu, Q., “Energy Saving and Prediction Modeling of Petrochemical Industries: A Novel Elm Based on Fahp,” Energy 122, 350(2017).
8. Pedram, S., Kaghazchi, T. and Ravanchi, M. T., “Performance and Energy Consumption of Membrane-distillation Hybrid Systems for Olefin-paraffin Separation,” Chemical Engineering &Technology 37, 587(2014).
9. Kumar, R., Golden, T., White, T. and Rokicki, A., “Novel Adsorption Distillation Hybrid Scheme for Propane/propylene Separation,” Separation Science and Technology 27, 2157(1992).
10. Motelica, A., Bruinsma, O. S., Kreiter, R., den Exter, M. and Vente, J. F., “Membrane Retrofit Option for Paraffin/olefin Separation? a Technoeconomic Evaluation,” Industrial & Engineering Chemistry Research 51, 6977(2012).
11. Khoshbin, R., Oruji, S. and Karimzadeh, R., “Catalytic Cracking of Light Naphtha over Hierarchical Zsm-5 Using Rice Husk Ash as
Silica Source in Presence of Ultrasound Energy: Effect of Carbon Nanotube Content,” Advanced Powder Technology 29, 2176(2018).
12. Li, B.-H., Castillo, Y. E. C. and Chang, C.-T., “An Improved Design Method for Retrofitting Industrial Heat Exchanger Networks Based on Pinch Analysis,” Chemical Engineering Research and Design 148, 260(2019).
13. Li, N., Wang, J., Kleme, J. J., Wang, Q., Varbanov, P. S., Yang,W., Liu, X. and Zeng, M., “A Target-evaluation Method for Heat Exchanger Network Optimisation with Heat Transfer Enhancement,” Energy Conversion and Management 238, 114154(2021).
14. Borgogna, A., Iaquaniello, G., Salladini, A., Agostini, E. and Boccacci,M., “Chemical Carbon and Hydrogen Recycle ThroughWaste Gasification: The Methanol Route,” Gasification, 85(2021).
15. Yoon, S.-G., Lee, J. and Park, S., “Heat Integration Analysis for an Industrial Ethylbenzene Plant Using Pinch Analysis,” Applied Thermal Engineering 27, 886(2007).
16. Joe, J. M. and Rabiu, A. M., “Retrofit of the Heat Recovery System of a Petroleum Refinery Using Pinch Analysis,” (2013).
17. Abbaszadeh, S. and Hassim, M. H., “Comparison of Methods Assessing Environmental Friendliness of Petrochemical Process
Design,” Journal of Cleaner Production 71, 110(2014).
18. Fakhroleslam, M. and Sadrameli, S. M., “Thermal/catalytic Cracking of Hydrocarbons for the Production of Olefins; a State-ofthe-art Review iii: Process Modeling and Simulation,” Fuel 252,553(2019).
19. Lee, J. and Park, S.-K., “Synthesis of Carbon Materials From Pfo, Byproducts of Naphtha Cracking Process,” Applied Chemistry for Engineering 22, 495(2011).
20. Ren, T., Patel, M. and Blok, K., “Olefins from Conventional and Heavy Feedstocks: Energy Use in Steam Cracking and Alternative Processes,” Energy 31, 425(2006).
21. Li, N., Wang, J., Kleme, J. J., Wang, Q., Varbanov, P. S., Yang,W., Liu, X. and Zeng, M., “A Target-evaluation Method for Heat Exchanger Network Optimisation with Heat Transfer Enhancement,” Energy Conversion and Management 238, 114154(2021).
22. Al-Riyami, B. A., Kleme, J. and Perry, S., “Heat Integration Retrofit Analysis of a Heat Exchanger Network of a Fluid Cat- alytic Cracking Plant,” Applied Thermal Engineering 21, 1449(2001).
23. Kemp, I. C., Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy,Else- vier(2011).
24. Kemp, I. C., Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy,Elsevier(2011).
25. Liu, J., Zhang, P., Xie, Q., Liang, D. and Bai, L., “Flexibility Analysis and Design of Heat Exchanger Network for Syngas-tomethanol Process,” International Journal of Coal Science &Technology, 1(2021).
26. Yamaki, T., Sakai, M., Matsukata, M., Tsutsuminai, S., Sakamoto, N., Toratani, N. and Kataoka, S., “Impact of Process Configuration on Energy Consumption and Membrane Area in Hybrid Separation Process Using Olefin-selective Zeolite Membrane,”Separation and Purification Technology 294, 121208(2022).
27. March, L., “Introduction to Pinch Technology,” Targeting House,Gadbrook Park, Northwich, Cheshire, CW9 7UZ, England(1998).
28. Islam, F., Sustainability Assessment of Direct Energy Deposition (ded) Based Hybrid Manufacturing Using Life Cycle Assessment (lca) Method, West Virginia University(2021).
29. Ganjehkaviri, A., Jaafar, M. M. and Hosseini, S. E., “Optimization and the Effect of Steam Turbine Outlet Quality on the Output Power of a Combined Cycle Power Plant,” Energy Conversion and Management 89, 231(2015).
30. Gao, Y. Q., “An Integrate-over-temperature Approach for Enhanced Sampling,” Journal of Chemical Physics 128, 064105(2008).
31. Beninca, M., Trierweiler, J. O. and Secchi, A. R., “Heat Integration of an Olefins Plant: Pinch Analysis and Mathematical Optimization Working Together,” Brazilian Journal of Chemical Engineering 28, 101(2011).
32. Wiebe, K. S., Bruckner, M., Giljum, S. and Lutz, C., “Calculating Energy-related co2 Emissions Embodied in International Trade
Using a Global Input–output Model,” Economic Systems Research 24, 113(2012).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로