Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 13, 2023
Revised April 1, 2023
Accepted April 9, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
고리형 아민이 포함된 메탄 하이드레이트의 튜닝과 가스 저장 연구
Tuning Behavior of (Cyclic Amines + Methane) Clathrate Hydrates and Their Application to Gas Storage
Abstract
이 연구에서는 메탄 가스(CH4)와 함께 사이클로프로필아민(cyclopropylamine, CPrA)과 사이클로펜틸아민
(cyclopentylamine, CPeA)을 이용한 하이드레이트의 튜닝효과, 가스 저장량, 그리고 하이드레이트의 열팽창 거동에 대
해 논의하였다. 메탄 가스의 저장량을 극대화시킬 수 있도록 하이드레이트 튜닝 효과를 하이드레이트에 투입된 객체
분자의 농도를 달리 함에 따라 알아보았다. (CPrA+CH4) 하이드레이트의 경우, 0.5 mol% 정도의 농도에서 최대 튜닝
효과가 발생하였으며, (CPeA+CH4) 하이드레이트는 기존 연구와 유사한 1.0 mol% 정도의 농도에서 최대 튜닝 효과가
발생하였다. (CPrA + CH4), (CPeA + CH4) 하이드레이트 모두 구조 II 하이드레이트를 형성한다고 알려진(테트라하이
드로퓨란 + CH4), (사이클로펜탄 + CH4) 하이드레이트보다 더 많은 가스량을 저장하는 것으로 밝혀졌다. 100, 150, 200,
250 K의 조건에서(CPrA + CH4), (CPeA + CH4) 하이드레이트의 분말 X-선 회절 분석을 통해 각 온도별 격자 크기를
알아내고 그 차이를 분석하여 열팽창 거동을 분석하였다. 이에 따라, 객체 분자의 크기 차이로 인해(CPeA + CH4) 하
이드레이트의 격자 상수가 더 큰 것으로 확인되었다.
In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary
(cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications
of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and
(cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that
maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates
were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary
(cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed
the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4)
clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed
the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and
methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.
References
2. Sloan, E. D., “Fundamental Principles and Applications of Natural Gas Hydrates,” Nature, 426(6964), 353-363(2003).
3. Sloan, E. D., Koh, C. A. and Sum, A. K., “Natural Gas Hydrates in Flow Assurance,” Elsevier(2011).
4. Park, K. H., Kim, D. H. and Cha, M., “Spectroscopic Identifications of Structure II Hydrate with New Large Alcohol Guest Molecule
(Cyclopentanemethanol),” Chem. Phys. Lett., 779, 138869(2021).
5. Park, K. H., Kim, D. H. and Cha, M., “Spectroscopic Observations of Host–guest Interactions Occurring in (cyclobutanemethanol + methane) Hydrate and Their Potential Application to Gas Storage,” Chem. Eng. J, 421, 127835(2020).
6. Youn, Y., Cha, M. and Lee, H., “Spectroscopic Observation of the Hydroxy Position in Butanol Hydrates and Its Effect on Hydrate Stability,” Chemphyschem, 16(13), 2876-2881(2015).
7. Seol, J., Park, J. and Shin, W., “Epoxycyclopentane Hydrate for Sustainable Hydrate-based Energy Storage: Notable Improvements
in Thermodynamic Condition and Storage Capacity,” Chem. Commun., 56(60), 8368-8371(2020).
8. Lee, J., Jin, Y. K. and Seo, Y., “Characterization of Cyclopentane Clathrates with Gaseous Guests for Gas Storage and Separation,” Chem. Eng. J., 338, 572-578(2018).
9. Lee, Y.-J., Kawamura, T., Yamamoto. Y. and Yoon, J.-H., “Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2,CH4 + CO2, and THF + CO2 + CH4 Hydrates,” J. Chem. Eng. Data,57, 3543-3548(2012).
10. Park, K. H., Kim, D. H. and Cha, M., “Phase Equilibria and Spectroscopic Identification of Structure II Hydrates with New
Hydrate-Forming Agents (Cyclopropylamine and Cyclopentylamine),” J. Phys. Chem. C, 126, 13585-13594(2022).
11. Kim, D. Y., Park, J., Lee, J. W., Ripmeester, J. A. and Lee, H.,“Critical Guest Concentration and Complete Tuning Pattern Appearing in the Binary Clathrate Hydrates,” J. Am. Chem. Soc., 128,15360-15361(2006).
12. Lee, S., Ok, Y., Lee, Y., Seo, D., Moon, S. and Park, Y., “Exploring the Tuning Patterns of Cyclopentyl Amine Hydrate for Potential Application to CH4 Storage,” J. Environ. Chem. Eng., 10, 108402(2022).
13. Seo, D., Moon, S., Lee, Y., Hong, S., Lee, S. and Park, Y.,“Investigation of Tuning Behavior of Trimethylene Oxide Hydrate with Guest Methane Molecule and Its Critical Guest Concentration,” Chem. Eng. J., 389, 123582(2020).
14. Shin, W., Park, S., Ro, H., Koh, D. Y., Seol, J. and Lee, H., “Phase Equilibrium Measurements and the Tuning Behavior of New sII Clathrate Hydrates,” J. Chem. Thermodyn., 44, 20-25(2012).
15. Moon, S., Ahn, Y. H., Kim, H., Hong, S., Koh, D. Y. and Park,Y., “Secondary Gaseous Guest-dependent Structures of Binary Neopentyl Alcohol Hydrates and Their Tuning Behavior for Potential Application to CO2 Capture,” Chem. Eng. J., 330, 890-898(2017).
16. Park, S., Kang, H., Shin, K., Seo, Y. and Lee, H., “Structural Transformation and Tuning Behavior Induced by the Propylamine Concentration in Hydrogen Clathrate Hydrates,” Phys.Chem. Chem. Phys., 17, 1949-1956(2015).
17. Kim, D. Y., Lee, J. W., Seo, Y. T., Ripmeester, J. A. and Lee, H.,“Structural Transition and Tuning of Tert-butylamine Hydrate,”Angew. Chem. Int. Edit., 44, 7749-7752(2005).
18. Cha, M., Baek, S., Lee, W., Shin, K. and Lee, J. W., “Tuning Behaviors of Methane Inclusion in Isoxazole Clathrate Hydrates,”J. Chem. Eng. Data, 60, 278-283(2015).
19. Lee, H., Lee, J. W., Kim, D. Y., Park, J., Seo, Y. T., Zeng, H.,Moudrakovski, I. L., Ratcliffe, C. I. and Ripmeester, J. A., “Tuning Clathrate Hydrates for Hydrogen Storage,” Nature, 434, 743-746(2005).
20. Kim, D. Y., Park, Y. and Lee, H., “Tuning Clathrate Hydrates:Application to Hydrogen Storage,” Catal. Today, 120, 257-261 (2007).
21. Susilo, R., Alavi, S., Ripmeester, J. A. and Englezos P., “Tuning Methane Content in Gas Hydrates via Thermodynamic Modeling and Molecular Dynamics Simulation,” Fluid Ph. Equilibr. 263,6-17(2008).
22. Seo, Y., Lee, J. W., Kumar, R., Moudrakovski, I. L., Lee, H. and Ripmeester, J. A., “Tuning the Composition of Guest Molecules in Clathrate Hydrates: NMR Identification and Its Significance to Gas Storage,” Chem. Asian J., 4, 1266-1274(2009).
23. Rodriguez-Carvajal, J., “FullProf: A Program for Rietveld Refinement and Profile Matching Analysis of Complex Powder Diffraction Patterns (ILL, unpublished),” Physica B, 192, 55-69(1993).
24. Park, K. H. and Cha, M., “Thermal Expansion Behavior of Clathrate Hydrates with Ammonium Fluoride,” J. Korean Soc. Miner. Energy Resour. Eng., 56(6), 631-638(2019).
25. Seo, Y.-T. and Lee, H., 13C NMR Analysis and Gas Uptake Measurements of Pure and Mixed Gas Hydrates: Development of Natural Gas Transport and Storage Method using Gas Hydrate,Korean J. Chem. Eng., 20, 1085-1091(2003).
26. Lv, Q. and Li, X., Raman Spectroscopic Studies on Microscopic Mechanism of CP-CH4 Mixture Hydrate, Energy Proc., 142,3264-3269(2017).
27. Hester, K. C., Huo, Z., Ballard, A. L., Koh, C. A., Miller, K. T.and Sloan, E. D., “Thermal Expansivity for sI and sII Clathrate Hydrates,” J. Phys. Chem. B., 111, 8830-8835(2007).