Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 7, 2023
Revised October 12, 2023
Accepted September 13, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성
Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture
Abstract
기존 아민 수용액 기반 CO2 포집 공정을 산업적으로 적용할 경우 CO2 탈거 및 용매 재생에 따른 재생 에너지가 크
다는 문제점을 갖고 있다. 본 논문은 CO2에 대한 높은 흡수 용량과 함께 흡수제에 포함된 물의 조성을 낮춤으로써 재
생 에너지를 저감할 수 있는 저수계 흡수제를 제안하였다. 이를 위해 본 연구에서는 디아민인 MAPA (3-
methylaminopropylamine)와 함께 물의 일부를 대신하여 물에 비해 CO2에 대한 물리적 용해도가 높고 비열이 낮은
NMP (N-methyl-2-pyrrolidone)를 흡수제에 도입하였다. 흡수제의 CO2에 대한 흡수 용량(αrich)과 순환 흡수 용량(Δα)
및 흡수 속도는 충전탑을 이용하여 측정하였다. 2.5M의 MAPA를 포함한 흡수제를 사용했을 경우 NMP가 10 wt% 포
함된 경우에 최대 순환 흡수 용량을 얻을 수 있었다. 총괄물질전달 계수는 NMP의 농도가 증가함에 따라 증가하였다.
그러나 0.5보다 더 높은 CO2 로딩 값에서는 NMP의 농도 증가에 따른 물질전달 계수의 증가 폭이 줄어들었다. lean 로
딩 값이 낮은 경우에는 점성에 의한 물질전달 저항이 낮아서 NMP 첨가에 따라 총괄 물질전달 계수가 증가하나 로딩
값이 증가함에 따라 흡수제의 점도가 증가하면서 CO2와 MAPA의 확산도가 낮아지며 이에 따라 총괄 물질전달계수가
급격히 감소하였다.
Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy
is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean
absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption
capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher
physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine
(MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean
solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved.
In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was
obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the
concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to
viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However,
as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA
decreases, resulting in sharply decreasing of the overall mass transfer coefficient.
References
Dioxide Capture Using Liquid Absorption Methods: A Review,”
Environ. Chem. Lett., 19, 770109(2021).
2. Jang, G. G., Thompson, J. A., Sun, X. and Tsouris, C., “Process
Intensification of CO2 Capture by Low-aqueous Solvent,”
Chem. Eng. J., 426, 131240(2021).
3. Shamiri, A., Shafeeyan, M. S., Tee, H. C., Leo, C. Y., Aroua, M.
Fig. 5. Effect of NMP composition on overall mass transfer coefficient
at 40℃. Fig. 6. Overall mass transfer coefficient with CO2 loading of absorbents
at 40℃.
Table 3. K
OG
a with lean loading of 2.5M MAPA
Weight percentage of NMP
[%]
K
OG
a [mol/sec·kPa]
α
lean=0.25 [mol CO2/mol amine] α
lean=0.50 α
lean=0.75 α
lean=1.0
5 4.52×10-5 3.57×10-5 2.04×10-5 4.54×10-6
10 4.49×10-5 3.78×10-5 2.35×10-5 6.35×10-6
15 4.73×10-5 3.88×10-5 2.42×10-5 9.15×10-6
20 6.17×10-5 5.00×10-5 2.73×10-5 1.03×10-6
560 왕슈아이 · 홍정현 · 유정균 · 홍연기
Korean Chem. Eng. Res., Vol. 61, No. 4, November, 2023
K. and Aghamohammadi, N., “Absorption of CO2 into Aqueous
Mixtures of Glycerol and Monoethanolamine,” J. Nat. Gas
Sci. Eng., 35, 605-613(2016).
4. Guo, H., Li, C., Shi, X., Li, H. and Shen, S., “Nonaqueous
Amine-Based Absorbents for Energy Efficient CO2 Capture,”
Appl. Energy, 239 725-734(2019).
5. Im, J., Hong, S. Y., Cheon, Y., Lee, J., Lee, J. S., Kim, H. S.,
Cheong, M. and Park, H., “Steric Hindrance-Induced Zwitterionic
Carbonates from Alkanolamines and CO2: Highly Efficient CO2
Absorbents,” Energy Environ. Sci., 4(10) 4284-4289(2011).
6. Leites, I. L., “Thermodynamics of CO2 Solubility in Mixtures
Monoethanolamine with Organic Solvents and Water and Commercial
Experience of Energy Saving Gas Purification Technology,”
Energy Convers. Manag., 39, 1665-1674(1998).
7. Lail, M., Tanthana, J. and Coleman, L., “Non-Aqueous Solvent
(NAS) CO2 Capture Process,” Energy Procedia, 63, 580-594(2014).
8. RTI International, Large bench-scale development of a Non-
Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired
Power Plants Utilizing Real Coal-Derived Flue Gas, Final Scientific/
Technical Report, Nov. 2019.
9. Mathias, P. M., Zheng, F., Heldebrant, D. J., Zwoster, A., Whyatt,
G., Freeman, C. M., Bearden, M. D. and Koech, P., “Measuring
the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic
Liquid Solvents with a Wetted-Wall Apparatus,” ChemSusChem,
21(9) 3617-3625(2015).
10. Zheng, F., Heldebrant, D. J., Mathias, P. M., Koech, P., Bhakta,
M., Freemam, C. J., Bearden, M. D. and Zwoster, A., “Bench-
Scale Testing and Process Performance Projections of CO2 Capture
by CO2−Binding Organic Liquids (CO2BOLs) with and without
Polarity-Swing-Assisted Regeneration,” Energy & Fuels, 30, 1192-
1203(2016)
11. Pinto, D. D. D., Johnsen, B., Awais, M., Svendsen, H. F. and
Knuutila, H. K., “Viscosity Measurements and Modeling of Loaded
and Unloaded Aqueous Solutions of MDEA, DMEA, DEEA
and MAPA,” Chem. Eng. Sci., 171, 340-350(2017).
12. Yuan, Y. and Rochelle, G. T., “CO2 Absorption Rate and Capacity
of Semi-Aqueous Piperazine for CO2 Capture,” Int. J. Greenh.
Gas Control, 85, 182-186(2019).
13. Zhang, W., Jin, X., Tu, W., Ma, Q., Mao, M. and Cui, C., “Development
of MEA-based CO2 Phase Change Absorbent,” Appl. Energy.,
195, 316-323(2017).
14. Yuan, Y. and Rochelle, G. T., “CO2 Absorption Rate in Semi-Aqueous
Monoethanolamine,” Chem. Eng. Sci., 182, 56-66(2018).
15. Lee, H. Y., Seok, C. H., You, J.-K. and Hong, Y. K., “Absorption
Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine
Absorbents Mixed with Physical Solvents,” Clean
Technol., 24(1), 50-54(2018).
16. Choi, Y. M., Hong, Y. K. and You, J.-K, “Carbon Dioxide
Absorption in a Packed Column Using Guanidine-based Superbase
Solution,” Korean Chem. Eng. Res., 54(5), 1-5(2016).