Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 3, 2023
Revised October 5, 2023
Accepted October 20, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향
Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct
Abstract
메탄, 프로판 등을 주성분으로 하는 연료가스는 폭발위험장소에서 사용될 수 있으며, 누출로 인한 공정조건의 영향
으로 불균일한 혼합기를 형성할 수 있다. 균일한 혼합기를 대상으로 측정된 문헌 데이터를 이용한 화재 폭발 위험성
평가, 손상 예측은 가스 누출에 의한 실제 폭발 사고와 다른 결과를 얻을 수 있다. 본 연구에서는 가스 누출시 나타날
수 있는 농도 변화에 있어서 불균일성 혼합기의 폭발압력, 화염속도 등의 폭발특성을 조사하였다. 길이 0.82 m의 스테
인리스 재질의 밀폐 배관에서 수행하였으며 컬러 초고속 카메라 및 압력 센서를 사용하여 관찰하였다. 또한 배관 내의
시간에 따른 농도차이 변화에 대해 회귀분석 모델을 사용하여 불균일 혼합물의 정량화 방법을 제안하였다. 본 연구의
농도 불균일성 조건에 있어서 메탄 폭발 시 전파화염은 불균일성 농도가 높아짐에 따라 화염 면적의 증가가 관찰되었
고 이는 난류 화염의 주름진 화염 구조와 유사하였다. 메탄의 최대압력까지 걸리는 소요시간은 불균일성이 클수록 감소
하였고, 폭발압력은 불균일성이 클수록 증가하였다. 농도가 불균일한 메탄의 KG(폭연지수)의 범위는 1.30~1.58 [MPa·m/s]
으로서 메탄의 농도가 균일성에서 불균일성로 변화하면서 17.7% 증가하였다.
Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.
References
Safety and Health Agency(KOSHA), (2010~2019).
2. Metghalchi, M. and Keck, J. C., “Laminar Burning Velocity of
Propane-air Mixtures at High Temperature and Pressure,” Combustion
and Flame, 38, 143-154(1980).
3. Razus, D., Brinzea, V., Mitu, M. and Oancea, D., “Temperature
and Pressure Influence on Explosion Pressures of Closed Vessel
Propane-air Deflagrations,” J. Hazard. Mater., 174, 548-555(2010).
4. Cashdollar, K. L., Zlochower, I. S., Green, G. M., Thomas, R.
and Hertzberg, M., “Flammability of Methane, Propane, and Hydrogen
Gases,” J. Loss Prev. Process Ind., 13, 327-340(2000).
5. Bauwens, C. R., Bergthorson, J. M. and Dorofeev, S. B., “Experimental
Study of Spherical-flame Acceleration Mechanisms in
Large-scale Propane-air Flames,” Proceedings of the Combustion
Institute, 35(2), 2059-2066(2015).
6. Planas-Cuchi, E., Vilchez, J. A. and Casal, J., “Fire and Explosion
Hazards during Filling-emptying of Tanks,” J. Loss Prev.
Process Ind., 12, 479-483(1999).
7. Molnarne, M., Mizsey, P. and Schroder, V., “Flammability of Gas
Mixtures Part 2: Influence of Inert Gases,” J. Hazard. Mater.,
121, 45-49(2005).
8. Chen, C. C., Liaw, H. J., Wang, T. C. and Lin, C. Y., “Carbon
Dioxide Dilution Effect on Flammability Limits for Hydrocarbons,”
J. Hazard. Mater., 163, 795-803(2009).
9. Giurcan, V., Mitu, M., Movileanu, C., Razus, D. and Oancea, D.,
“Influence of Inert Additives on Small-scale Closed Vessel Explosions
of Propane-air Mixtures,” Fire Safety Journal, 111, 102939
(2020).
10. Liu, Y., Zhang, Y., Zhao, D., Bai, M. and Shu C. M., “Effects of
Initial Temperature and Pressure on Explosion Characteristics of
Propane-diluent-air Mixtures,” J. Loss Prev. Process Ind., 72,
104585(2021).
11. Zheng, K., Wu, Q., Chen, C., Xing, Z., Hao, Y. and Yu, M., “Explosion
Behavior of Non-uniform Methane-air Mixture in an Obstructed
Duct with Different Blockage Ratios,” Energy, 255(15), 124603
(2022).
12. Gao, J., Ai, B., Hao, B., Guo, B., Hong, B. and Jiang, X., “Effect
of Obstacles Gradient Arrangement on Non-Uniformly Distributed
LPG–Air Premixed Gas Deflagration,” Energies, 15, 6872
(2022).
13. Harayama, M., Ohtano, H., Hirano, T. and Akita, K., “Explosion
of Combustible Gaseous Mixtures with Non-Uniform Concentration
Distrbution,” Japan Society for Safety Engineering, 19(5),
266-271(1980).
14. Bae, J. I., Kim, Y. S., Seo, Y. C. and Shin, C. S., “Explosion
Characteristics of Nonhomogeneous LPG-Air Mixtures,” Journal
of KIIS, 8(4), 114-119(1993).
15. Sochet, I., Lamy, T. and Brossard, J., “Experimental Investigation
on the Detonability of Non-uniform Gaseous Mixtures,” Shock
Waves, 10, 363-376(2000).
16. Kim, S. S. and Jang, G. H., “Effect of Non-uniform Concentration
on Gas Explosion,” KIGAS, 7(4), 14-19(2003).
17. Hjertager, B. H., Bjørkhaug, M. and Fuhre, K., “Explosion Propagation
of Non-homogeneous Methane-air Clouds inside An
Obstructed 50 m3 Vented Vessel”, J. Hazard. Mater., 19(2), 139-
153(1988).
18. Han, O. S., “Study on Analysis Model and Effect Factors in Fire
and Explosion Accidents,” Occupational Safety & Health Research
Institute, KOSHA, 2016-OSHIR-1254, 6-8(2016).
19. Dobashi, R., Kawamura, S., Kuwana, K. and Nakayama, Y.,
“Consequence Analysis of Blast Wave from Accidenal Gas Explosion,”
Proc. Combust. Inst., 33, 2295-2301(2011).
20. Gostintsev, Y. A., Fortov, V. E. and Shatskikh, Y. V., “The Selfsimilar
Law of Propagation and Fractal Surface Structure of the
Free Extending Turbulent Spherical Flame,” Doklady Physical
Chemistry, 397, 141-144(2004).
21. Kim, W. K., Endo, T., Mogi, T., Kuana, K. and Dobashi, R.,
“Wrinkling of Large-scale Flame in Lean Propane-air Mixture due
to Cellular Instabilities,” Combust. Sci. Technol., 191, 491-503
(2019).
22. Andrews, G. E. and Bradley, D., “The Burning Velocity of Methane-
Air Mixtures,” Combustion and Flame, 19(2), 275-288(1972).
23. Anupam, G., Natalia, M. M., Karl, P. C. and Deanna, A. L.,
“Laminar Burning Velocity of Hydrogen, Methane, Ethane, Ethylene
and Propane Flames at near-crogenic Temperature,” Application
in Energy and Combustion Science, 12, 100094(2022).
24. NFPA 68, Standard on Explosion Protection By Deflagration
Venting, National Fire Protection Association(2018).
25. Li, X., Zhang, H., Bai, S., Dong, C., Ye, X. and Jia, S., “Analysis of
the Effect Mechanism of Water and CH4 Concentration on Gas
Explosion in Confined Space,” J. Saudi Chem. Soci., 25, 101363
(2021).
26. Kundu, S., Zanganeh, J. and Moghtaderi, B., “A Review on
Undestanding Explosion from Methane-air mixture,” J. Loss Prev.
Process Ind., 40, 507-523(2016).
27. Kuznetsov, M., Ciccarelli, G., Dorofeev, S., Alekseev, V., Yankin,
Y. and Kim, T., “DDT in Methane-air Mixtures,” Shock Wave.,
12, 215-220(2002).
28. Zhang, Q., Pang, L. and Liang, H., “Effect of Scale on the Explosion
of Methane in air and its Shockwave,” J. Loss Prev. Process
Ind., 24, 43-48(2011).
29. Dobashi, R., “Experimental Study on Gas Explosion Behavior in
Enclousure,” J. Loss Prev. Process Ind., 10(2), 83-89(1997).
30. Lei, B., Xiao, J., Kuznetsov, M. and Jordan, T., “Effects of
Heat Transfer Mechanism on Methane-air Mixture Explosion
in 20L Spherical Device,” J. Loss Prev. Process Ind., 80, 104864
(2022).