Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 27, 2023
Revised December 22, 2023
Accepted January 6, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성
Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts
Abstract
본 연구에서는 고용량 리튬이온배터리용 음극 소재로 탄소 코팅된 할로우 구조의 실리콘(HSi/C) 복합소재를 제조하
였다. CTAB (N-Cetyltrimethylammonium bromide)이 첨가된 Stöber법을 통해 할로우 실리카(HSiO2)를 합성하였으며,
HSiO2를 마그네슘 열 환원한 뒤 표면에 탄소를 코팅하여 HSi/C 음극 복합소재를 제조하였다. 복합소재의 물리적 특성과 전
기화학적 특성을 CTAB 조성에 따라 조사하였다. FE-SEM 분석 결과 CTAB 조성이 감소할수록 HSiO2 입자의 크기가
커졌으나 두께는 감소하였다. 제조된 HSi/C 소재는 다양한 CTAB 비율(0.5, 1.0, 1.5)에서 각각 2188.6, 2164.5, 1866.7
mAh/g의 높은 초기 방전용량을 나타내었으며, 100 사이클의 충·방전 후 0.5-HSi/C가 1171.3 mAh/g의 높은 가역 용량
과 70.9%의 용량 유지율을 보여주었다. 전기화학 임피던스 분광법(Electrochemical Impedance Spectroscopy, EIS)으로
저항 특성을 분석하였으며, 0.5-HSi/C 소재가 20 사이클 이후 다른 CTAB 조성의 HSi/C 복합소재에 비해 안정적인 저
항 특성을 보이는 것을 확인하였다.
In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (NCetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.
References
Amorphous-Si@SiOx/C Composite Anode Materials
Forr Li-ion Batteries Derived from Ball-milling and in situ Carbonization,
” J. Power Sources, 256, 190-199(2014).
2. Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda
Y. and Yamamoto, O., “A High Performance Silicon/carbon Composite
Anode with Carbon Nanofiber for Lithium-ion Batteries”,
J. Power Sources, 195, 1720-1725(2010).
3. Xu, Z., Liu, X., Luo, Y., Zhou, L. and Kim, J., “Nanosilicon
Anodes for High Performance Rechargeable Batteries,” Prog.
Mater. Sci., 90, 1-44(2017).
4. Shi, L., Wang, W., Wang, A., Yuan, K. and Yang, Y., “Understanding
the Impact Mechanism of the Thermal Effect on the
Porous Silicon Anode Material Preparation via Magnesiothermic
Reduction, ” J. Alloys Compd., 661, 27-37(2016).
5. Wang, P., Zhang, X., Fan, X., Zhong, J. and Huang, K., “Synthesis
of Si Nanosheets by Using Sodium Chloride as Template
for High-performance Lithium-ion Battery Anode Material,” J.
Power Sources, 379, 20-25(2018).
6. Yan, Y., McDowell, M., Ryu, I., Wu, H., Liu, N., Hu, L., Nix, W.
and Cui, Y., “Interconnected Silicon Hollow Nanospheres for
Lithium-ion Battery Anodes with Long Cycle Life, ” Nano Lett.,
11, 2949-2954(2011).
7. Zhu, L., Chen, Y., Wu, C., Chu, R., Zhang, J., Jiang, H., Zeng,
Y., Zhang, Y. and Guo, H., “Double-carbon Protected Silicon
Anode for High Performance Lithium-ion Batteries, ” J. Alloys
Compd., 812, 151848(2020).
8. Choi, N. and Lee, J., “Electrochemical Performances of Spherical
Silicon/carbon Anode Materials Prepared by Hydrothermal Synthesis,
” Korean Chem. Eng. Res., 59(3) 326-332(2021).
9. Jeong, M., Islam, M., Du, H., Lee, Y., Sun, H., Choi, W., Lee, J.,
Chung, J. and Jung, H., “Nitrogen-doped Carbon Coated Porous
Silicon as High Performance Anode Materials for Lithium-ion
Batteries, ” Electrochim. Acta, 209, 299-307(2016).
10. An, W., Xiang, B., Fu, J., Mei, S., Guo, S., Huo, K., Zhang, X.,
Gao, B. and Chu, P., “Three-dimensional Carbon-coating Silicon
Nanopaticles Welded on Carbon Nanotubes Composites for
High-stability Lithium-ion Battery Anodes”, Appl. Surf. Sci., 479,
896-902(2019).
11. Maheed, M., Saleem, A., Ma, X. and Ma, W., “Clay-derived
Mesoporous Si/rGO for Anode Material of Lithium-ion Batteries”,
J. Alloys Compd., 848, 156590(2020).
12. Liang, G., Qin, X., Zou, J., Luo, L., Wang, Y., Wu, M., Zhu, H.,
Chen, H., Kang, F. and Li, B., “Electrosparayed Silicon-embedded
Porous Carbon Microspheres as Lithium-ion Battery Anodes
with Exceptional Rate Capacities, ” Carbon, 127, 424-431(2018).
13. Zhang, H., Wu, J., Zhou, L., Zhang, D. and Qi, L., “Facile Synthesis
of Monodisperse Microspheres and Gigantic Hollow Shells
of Mesoporous Silica in Mixed Water-ethanol Solvents, ” Langmuir,
23, 1107-1113(2007).
14. Hamedani, A., Ow-Yang, C. and Soytas, S., “Mechanisms of Si
Nanoparticle Formation by Molten Salt Magnetiothermic Reduction
of Silica for Lithium-ion Battery Anodes”, ChemElectroChem,
8, 3181-3191(2021).
15. Darghouth, A., Aouida, S. and Bessais, B., “High Purity Porous
Silicon Powder Synthesis by Magnesiothermic Reduction of
Tunisian Silica Sand,” Silicon, 13, 667-676(2021).
16. Wang, T., Ma, W., Shangguan, J., Jiang, W. and Zhong, Q., “Controllable
Synthesis of Hollow Mesoporous Silica Spheres and Application
as Support of Nano-gold,” J. Solid State Chem., 215, 67-73(2014).
17. Fang, S., Tong, Z., Nie, P., Liu, G. and Zhang, X., “Raspberrylike
Nanostructured Silicon Composite Anode for High Performance
Lithium-ion Batteries,” ACS Appl. Mater. Interfaces, 9,
18766-18773(2017).
18. Chen, S., Chen, Z., Luo, Y., Xia, M. and Cao, C., “Silicon Hollow
Sphere Anode with Enhanced Cycling Stability by a Template-
free Method,” Nanotechnology, 28(16), 165404(2017).
19. Wen, Z., Wu, F., Li, L., Chen, N., Luo, G., Du, J., Zhao, L., Ma,
Y., Li, Y. and Chen, R., “Electrolyte Design Enabling Stable
Solid Electrolyte Interface for High-performance Silicon/carbon
Anodes,” ACS Appl. Mater. Interfaces, 14, 38807-38814(2022).
20. Xiao, T., Zhang, W., Xu, T., Wu, J. and Wei, M., “Hollow SiO2
Microspheres Coated with Nitrogen Doped Carbon Layer as An
Anode for High Performance Lithium-ion Batteries,” Electrochim.
Acta, 306, 106-112(2019).
21. Sohn, M., Kim, D., Park, H., Kim, J. and Kim, H., “Porous Siliconcarbon
Composite Materials Engineered by Simultaneous Alkaine
Etching for High-capacity Lithium Storage Anodes,” Electrochim.
Acta, 196, 197-205(2016).
22. Zhang, Y., Mu, Z., Lai, J., Chao, Y., Yang, Y., Zhou, P., Li, Y.,
Yang, W., Xia, Z. and Guo, S., “MXene/Si@SiOx@C Layer-by-layer
Superstructure with Auto Adjustable Function for Superior Stable
Lithium Storage,” ACS Nano, 13, 2167-2175(2019).