ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 17, 2024
Revised July 8, 2024
Accepted July 8, 2024
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor

서경대학교 나노융합공학과
Department of Nano Convergence Engineering, Seokyeong University
mjsong@skuniv.ac.kr
Korean Chemical Engineering Research, August 2024, 62(3), 233-237(5), https://doi.org/10.9713/kcer.2024.62.3.233 Epub 1 August 2024
downloadDownload PDF

Abstract

본 연구는 유/무기 나노복합체를 이용한 PAN계 탄소섬유 토우(PAN-based carbon fibers tow) 기반의 유연 전극 제

작 및 이를 활용한 비효소 전기화학 센서 개발에 대한 것으로, 전도성 고분자 polyaniline (PANI)와 금속 산화물 CuO을

유/무기 나노복합체 소재로 사용하였으며 글루코스를 전기화학 센서 타겟으로 적용하였다. 전극 제작을 위해 시판된

CFT는 열처리를 통한 사이징(sizing) 제거와 전기화학적 산화에 의한 표면 활성화의 전처리 공정을 거쳐 사용되었다.

유/무기 나노복합체는 전기화학적 중합 및 증착법을 통해 전처리된 CFT 표면 위에 순차적으로 합성되어 최종 CFT/

PANI/CuO NPs 전극이 제작되었다. CFT/PANI/CuO NPs 전극의 전기화학적 특성 및 센싱 성능은 시간대전류법와 순

환전압 전류법, 전기화학 임피던스 분광법을 이용하여 분석되었다. CFT/PANI/CuO NPs 전극은 전도성 고분자과 금속

산화물의 접목에 의해 전기 전도도 향상 및 우수한 전자 전달, 감응시간 단축, 비표면적 증가 등 개선된 전기화학적 특

성과 증가된 감도, 넓은 선형 농도 구간, 높은 선택도 등 향상된 글루코스 센싱 성능을 보였다.

This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using

organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was

composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target

of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical

oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical

polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical

properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry

(CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/

CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear

range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances

due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific

surface area.

References

1. Mulvihill, D. M., Smerdova, O. and Sutcliffe, M. P. F., “Friction
of Carbon Fibre Tows,” Compos. Pt. A- Appl. Sci. Manuf., 93,185-198(2017).
2. Ghanbari, K. and Babaei, Z., “Fabrication and Characterization
of Non-enzymatic Glucose Sensor Based on Ternary NiO/CuO/
polyaniline Nanocomposite,” Anal. Biochem., 498, 37-46(2016).
3. Gholivand, M. B., Heydari, H., Abdolmaleki, A. and Hosseini,
H., “Nanostructured CuO/PANI Composite as Supercapacitor
Electrode Material,” Mat. Sci. Semicond. Process., 30, 157-161
(2015).
4. Song, M. J., “Evaluation of Pretreatment Effect and Non-enzymatic
Glucose Sensing Performance of Carbon Fibers Tow Electrode,”
Korean Chem. Eng. Res., 62, 1-6(2024).
5. Torz-Piotrowska, R., Wrzyszczyński, A., Paprocki, K., Szreiber,
M., Uniszkiewicz, C. and Staryga, E., “The Application of CVD
Diamond Films in Cyclic Voltammetry,” J. Achiev. Mater. Manuf.
Eng., 37, 486-491(2009).
6. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K.,
Rao, V. K. and Vijayaraghavan, R., “Immobilization of Acetylcholinesterase-
choline Oxidase on a Gold-platinum Bimetallic
Nanoparticles Modified Glassy Carbon Electrode for the Sensitive
Detection of Organophosphate Pesticides, Carbamates and Nerve
Agents,” Biosens. Bioelectron., 25, 832-838(2009).
7. Misak, H. E., Asmatulu, R. A., O’Malley, M., Jurak, E. and Mall,
S., “Functionalization of Carbon Nanotube Yarn by Acid Treatment,”
Int. J. Smart Nano Mater., 5, 34-43(2014).
8. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N.,
“Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its
Electrochemical Detection of Glucose,” J. Electrochem. Soc., 162,
H392-H396(2015).
9. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals
and Applications, 2nd ed., John Wiley and Sons, New
York (1980).
10. Song, M. J., “Nonenzymatic Sensor Based on a Carbon Fiber
Electrode Modified with Boron-doped Diamond for Detection
of Glucose,” Korean Chem. Eng. Res., 57, 606-610(2019).
11. Yang, J., Jiang, L. C., Zhang, W. D. and Gunasekaran, S., “A Highly
Sensitive Non-enzymatic Glucose Sensor Based on a Simple
Two-step Electrodeposition of Cupric Oxide (CuO) Nanoparticles
Onto Multi-walled Carbon Nanotube Arrays,” Talanta, 82,
25-33(2010).
12. Song, M. J., “Electrochemical Sensor for Non-enzymatic Glucose
Detection Based on Flexible CNT Fiber Electrode Dispersed with
CuO Nanoparticles,” Korean Chem. Eng. Res., 61, 52-57(2023).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로