ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 30, 2005
Accepted October 25, 2005
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질

Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch

충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220 1충남대학교 클렘슨대학교, 화학공학과
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Department of Chemical Engineering, Clemson University, Clemson, SC 29634-0909, USA
Korean Chemical Engineering Research, December 2005, 43(6), 745-750(6), NONE Epub 23 January 2006
downloadDownload PDF

Abstract

등방성 피치계 탄소섬유 및 활성탄소섬유를 얻기 위한 프리커서 피치를 제조하기 위하여 NCB(naphtha cracking bottoms) oil을 열처리온도, 처리시간, 질소유량을 변화시키면서 개질하였다. 개질된 피치의 수율, 연화점, 원소분석, 분자량분포를 측정하고 용융방사하여 최적의 개질조건을 얻었다. 질소유량 1.25 vvm, 열처리온도 380 ℃, 처리시간 3 h 일 때 약 240 ℃의 연화점을 갖는 방사성이 우수한 프리커서 피치를 제조할 수 있었다. 이때의 수율은 약 21 wt%, C/H 몰비는 1.07에서 1.34로, 방향족화도는 0.85에서 0.88으로 증가하였고, 벤젠 및 퀴놀린 불용분은 각각 30.0 wt%, 1.5 wt% 이었다, 방사 온도는 프리커서 피치의 연화점보다 약 50 ℃ 높았으며 분자량은 250~1,250 범위에 분포되어 있지만 80% 이상은 250~700의 좁은 범위에 몰려있었다.
Naphtha cracking bottoms(NCB) oil was reformed by varying the heat treatment temperature, treatment time, and nitrogen flow rate in preparation of precursor pitch for isotropic pitch-based carbon fibers and activated carbon fibers. The reformed pitches were investigated in the yield, softening point, elementary analysis, and molecular weight distribution, and then the precursors reformed were melt spun to certify the optimum reforming conditions. The optimum precursor pitch was prepared when the NCB oil was reformed at 380 ℃, 3 h and 1.25 vvm N2, and it’s the softening point was around 240 ℃. The reforming resulted in product yield of 21 wt%. The C/H mole ratio of the precursor pitch increased from 1.07 to 1.34, the aromaticity increased from 0.85 to 0.88. The insolubles in benzene and quinoline were 30.0 wt% and 1.5 wt%, respectively. The spinning temperature was about 50 ℃ higher than the softening point. The molecular weights of the precursor components were distributed from 250 to 1250, and 80% of them were in the range of 250 to 700.

References

Ryu SK, High Temp.-High Press., 22(4), 345 (1990)
Donnet JB, Wang TK, Peng JCM, Rebouillat S, Carbon Fibers, 3rd ed., Marcel Dekker Inc, New York (1998)
Eom SY, Cho TH, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(5), 591 (2000)
Kim MS, Kim DY, HWAHAK KONGHAK, 36(1), 34 (1998)
Shin CS, Lee KD, Lee SJ, Lee TH, HWAHAK KONGHAK, 36(3), 387 (1998)
Otani S, Sanada Y, Ohm Co., 229 (1980)
Brooks JD, Taylor GH, "Chemistry and Physics of Carbon", Marcel Dekker Inc., New York, 4, 234-240 (1968)
Yamada Y, Honda H, Abe T, J. Japan Petrol., 18(1), 758 (1979)
Edwards WF, Jin L, Thies MC, Carbon, 41(14), 2761 (2003) 
In SJ, Ryu SK, Rhee BS, HWAHAK KONGHAK, 27(3), 291 (1989)
Fitzer E, Muellur K, Schaefer W, "Chemistry and Physics of Carbon", Marcel Dekker Inc., New York, 7, 237-240 (1971)
Lee GD, "Effect of Heat Treatment Temperature and Time during the NCB Oil Transformed Into Mesophase Pitch", Master Dissertation, Chungnam National Univ., Daejeon, Korea (1989)
Yamada Y, J. Japan Petrol., 24(1), 74 (1981)
Griffin RR, Walker PL, 16th Biennial Conf. on Carbon, Univ. of California, Califormia, 16 (1983)
Hwang JS, Lee CH, Cho KH, Kim MS, Kim CJ, Ryu SK, Rhee BS, HWAHAK KONGHAK, 33(5), 551 (1995)
Chwastiak S, Lewis IC, Carbon, 16(2), 156 (1978) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로