ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 18, 2008
Accepted April 22, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

삼상 역 유동층의 수력학, 열전달 및 물질전달 특성

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds

충남대학교 화학공학과 1한국과학기술원 생명화학공학과 2한국에너지기술연구원
School of Chemical Engineering, Chungnam National University, 305-764 Daejeon, Korea 1Department Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Korea 2Korea Institute of Energy Research, Daejeon 305-343, Korea
Korean Chemical Engineering Research, June 2008, 46(3), 451-464(14), NONE Epub 7 July 2008
downloadDownload PDF

Abstract

삼상 역 유동층은 유동하거나 부유하는 입자의 크기가 매우 작은 경우나 유동입자의 밀도가 액체보다 작은 담체나 접촉매체 또는 촉매전달물질인 경우에 생물반응기, 발효공정, 폐수처리공정, 흡착, 흡수공정 등에 매우 효과적으로 사용될 수 있어서 그 적용성은 날로 증대되고 있다. 그러나, 삼상 역 유동층에 대해서는 많은 연구가 진행되지 않아 왔으며 수력학적 특성에 대한 연구조차도 미흡한 실정이다. 삼상 역 유동층을 이용한 많은 종류의 반응기와 공정들의 운전과 설계 그리고 scale-up을 위해서는 삼상 역 유동층에서 수력학적 특성과 열전달과 물질전달과 같은 이동현상에 대한 정보는 필수적이라는 것은 자명한 사실이다. 따라서, 본 총설에서는 삼상 역 유동층에 대한 정보들을 공학적 측면에서 요약하고 재정리하여서 이 분야의 현장에서 필요한 지식들을 제안하고자 하였다. 본 논문은 수력학적 특성, 열전달 특성 그리고 물질전달 특성의 세 부분으로 이루어져있다. 즉, 수력학적 특성 부분에서는 운전변수가 상 체류량, 기포의 특성 그리고 유동입자의 분산에 미치는 영향을 검토하였으며, 열전달 특성 부분에서는 삼상 역 유동층에서의 운전변수가 열전달 계수에 미치는 영향을 고찰하였고, 열전달 모델에 대한 정리를 하였으며, 물질전달 특성 부분에서는 운전변수가 연속액상의 축방향 분산계수 및 액상 부피물질전달계수에 미치는 영향에 대해 고찰하였다. 또한, 각 절에서 유동입자의 최소유동화속도, 상 체류량, 기포특성, 유동입자의 요동빈도수 및 유동입자의 분산 등과 같은 수력학적 특성과 열전달 계수 그리고 연속액상의 축방향 확산계수와 물질전달계수 등을 예측할 수 있는 상관식들을 제안하였다. 본 총설의 마지막 절에서는 삼상 역 유동층의 공업적 응용을 위해 앞으로 더 연구해야하는 내용에 대해 제안을 하였다.
Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

References

Buffiere P, Moletta R, Chem. Eng. Sci., 54(9), 1233 (1999)
Legile P, Menard G, Laurent C, Thomas D, Bernis A, Int. Chem. Eng., 32, 41 (1992)
Fan LS, Butterworths, Bosten, 368-374 (1989)
Kim SD, Kang Y, Stud. Surf. Sci. Catal., 159, 103 (2006)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Wild G, Saberian M, Schwarty J, Charpentier JC, International Chem. Eng., 24, 639 (1984)
Garcia-Calderon D, Buffiere P, Moletta R, Elmaleh S, Water Res., 32, 3593 (1998)
Ibrahim YA, Briens CL, Margaritis A, Bergongnou MA, AIChE J., 42(7), 1889 (1996)
Kang Y, Fan LT, Min BT, Kim SD, Biotechnol. Bioeng., 37, 580 (1991)
Tokuyama H, Nii S, Kawaizumi F, Takahashi K, Ind. Eng. Chem. Res., 41(14), 3447 (2002)
Krishnaiah K, Gum S, Sekar V, Chem. Eng. J., 51, 109 (1993)
Lee DH, Epatein N, Grace JR, KJChE, 17, 684 (2000)
Renganathan T, Krishnaiah K, Can. J. Chem. Eng., 81, 853 (2003)
Fan LS, Muroyama K, Shern, SH, Chem. Eng. J. and Biochem. Eng. J., 24, 143 (1982)
Fan LS, Muroyama K, Shern SH, Chem. Eng. Sci., 37, 1570 (1982)
Han HD, Choi HS, Kang Y, Kim SD, J. KIChE, 40, 209 (2002)
Kim UY, Son SM, Kang SH, Kang Y, Kim SD, Korean J. Chem. Eng., 24(5), 892 (2007)
Kim SD, Kang Y, Mix Flow Hydrodynamics, Advances in Engineering Fluid Mechanics Series, N. P. Cheremisinoff Edn. Gulf Comp. Houston (1996)
Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971 (1997)
Shin IS, Son SM, Kang Y, Kang SH, Kim SD, J. Ind. Eng. Chem., 13(6), 971 (2007)
Son SM, Yun JH, Kim HT, Song PS, Kang Y, Kim SD, Korean Chem. Eng. Res., 42(2), 235 (2004)
Son SM, Kang SH, Kim UY, Kang Y, Kim SD, Chem. Eng. Process., 46(8), 736 (2007)
Kim HT, Song PS, Choi GS, Kim SW, Cho JY, Kang Y, J. Korean Ind. Eng. Chem., 13(7), 691 (2002)
Son SM, Song PS, Lee CG, Kang SH, Kang Y, Kusakabe K, J. Chem. Eng. Jpn., 37(8), 990 (2004)
Lee KI, Son SM, Kim UY, Kang Y, Kang SH, Kim SD, Lee JK, Seo YC, Kim WH, Chem. Eng. Sci., 62(24), 7060 (2007)
Kang SH, Lee CG, Jung SH, Son SM, Kang Y, J. KSEE, 26, 1191 (2004)
Son SM, Kim HT, Kang SH, Kang Y, Kim SD, Korean Chem. Eng. Res., 42(3), 332 (2004)
Cho YJ, Park HY, Kim SW, Kang Y, Kim SD, I&EC Research, 41, 2058 (2002)
Son SM, Lee KI, Kang SH, Kang Y, Kim SD, AIChE J., 53(11), 3011 (2007)
Hatate Y, Tajiri S, Fukumoto T, Uemura Y, Hano T, J. Chem. Eng. Jpn., 23, 370 (1990)
Park HY, Kim SW, Cho YJ, Kang Y, Kim SD, J. KIChE, 39, 619 (2001)
Nikov I, Karamanev D, AIChE J., 37, 781 (1991)
Kim SW, Song PS, Kang Y, Kim SD, J. KIChE, 40, 482 (2002)
Kim SW, Kim HT, Song PS, Kang Y, Kim SD, Can. J. Chem. Eng., 81, 621 (2003)
Nikolov V, Farag I, Nikov I, Bioprocess Eng., 23, 427 (2000)
Song PS, Kang SH, Choi WK, Jung CH, Oh WZ, Kang Y, Stud. Surf. Sci. Catal., 159, 537 (2006)
Tang WT, Fan LS, I&EC Research, 29, 128 (1990)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로