ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 2, 2008
Accepted August 3, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

고분자 비이온 계면활성제 수용액에 의한 탄화수소 오일의 가용화 메커니즘

Solubilization Mechanism of Hydrocarbon Oils by Polymeric Nonionic Surfactant Solution

동국대학교 공과대학 화공생물공학과, 100-715 서울시 중구 필동 3가 26
Department of Chemical and Biochemical Engineering, Dongguk University, 26, Pil-dong, 3-ga, Jung-gu, Seoul 100-715, Korea
jongchoo@dongguk.edu
Korean Chemical Engineering Research, February 2009, 47(1), 24-30(7), NONE Epub 27 February 2009
downloadDownload PDF

Abstract

본 연구에서는 고분자 비이온 계면활성제 Pluronic L64(EO13PO30EO13) 마이셀에 의한 n-decane, n-undecane, n-dodecane의 가용화 실험을 수행하였다. Oil drop contacting 실험을 이용하여 탄화수소 오일을 계면활성제 마이셀 용액에 주입한 후 시간에 따른 탄화수소 오일의 크기를 측정하여 가용화 속도를 결정하였다. 가용화 속도는 초기 오일 drop의 크기에 상관없이 일정하게 나타났으며, 탄화수소 오일의 탄소수(alkane carbon number, ACN)가 증가함에 따라 감소하고 계면활성제 농도에 따라 거의 선형적으로 증가함을 알 수 있었다. 이러한 결과로부터 Pluronic L64 마이셀에 의한 n-decane, n-undecane, n-dodecane의 가용화는 diffusion-controlled 메커니즘이 아니라 interface-controlled 메커니즘을 따르는 것을 확인할 수 있었다. 또한 turbidimeter를 이용하여 측정한 가용화도(equilibrium solubilization capacity, ESC)는 ACN에 따라 감소하나, 계면활성제 농도와 가용화 속도 증가에 따라 모두 증가하였다. Spinning drop tensiometer를 이용하여 dynamic interfacial tension을 측정한 결과, ACN이 증가함에 따라 평형에 도달하는 데 걸리는 시간과 평형에서의 장력 값이 모두 증가하였으나 계면활성제 농도에 따라서는 감소하였다.
In this study, solubilization experiments of n-decane, n-undecane and n-dodecane oil were performed by micellar solutions of polymeric nonionic surfactant Pluronic L64(EO13PO30EO13) at room temperature. A single spherical drop of hydrocarbon oil was injected into aqueous surfactant solution using an oil drop contacting technique and solubilization rate of hydrocarbon oil was measured by observing the size of oil drop with time. It was shown that solubilization rate decreased with the alkane carbon number(ACN) of the hydrocarbon oil. The solubilization rate was also found to be independent of initial oil dorp size and almost linearly proportional to the initial surfactant concentration. These results revealed that solubilization of n-decane, n-undecane and n-dodecane oils by L64 micellar solution is controlled by interface-controlled mechanism but not by diffusion-controlled mechanism. The equilibrium solubilization capacity(ESC) was measured by a turbidimeter and the result showed that EAC decreased with an increase in ACN but increased with both increases in surfactant concentration and solubilization rate. Dynamic interfacial tension measurements showed that interfacial tension and equilibrium time increased with an increase in ACN of hydrocarbon oil but decreased with an increase in surfactant concentration.

References

McClements DJ, Dungan SR, Colloids Surf A: Physicochem. Eng. Aspects, 104, 127 (1995)
Weiss J, Coupland JN, Mcclements DJ, J. Phys. Chem., 100(3), 1066 (1996)
Weiss J, McClements DJ, Langmuir, 16(14), 5879 (2000)
Christian D, Scamehorn JF, Surfactant Science Series, Marcel Dekker, Inc., New York, 55, 1(1995)
Cho G, Glatzhofer DT, J. Ind. Eng. Chem., 3(1), 29 (1997)
Rho SG, Kang CH, J. Ind. Eng. Chem., 10(2), 247 (2004)
Cheon HY, Kim MS, Jeong NH, J. Ind. Eng. Chem., 11(1), 10 (2005)
Oh JH, J. Korean Ind. Eng. Chem., 11(1), 80 (2000)
Carroll BJ, J. Colloid Interface Sci., 79, 126 (1981)
Dungan SR, Tai BH, Gerhardt NI, Colloids Surf. A: Phys. Chem. Eng. Asp., 216, 149 (2003)
Kabalnov A, Weers J, Langmuir, 12(14), 3442 (1996)
Pena AA, Miller CA, J. Colloid Interface Sci., 123, 241 (2006)
Carroll BJ, O’Rourke BGC, Ward AJI, J. Pharm. Pharmacol., 34, 287 (1982)
Carroll BJ, J. Chem. Soc. Faraday Trans., 82, 3205 (1986)
Carroll BJ, Doyle PJ, J. Pharm. Pharmacol., 40, 229 (1988)
Donegan AC, Ward AJI, J. Pharm. Pharmacol., 39, 45 (1987)
O’Rourke BGC, Ward AJI, Carroll BJ, J. Pharm. Pharmacol., 39, 865 (1987)
Chen BH, Miller CA, Colloids Surf. A: Phys. Chem. Eng. Asp., 128, 129 (1997)
Chen BH, Miller CA, Garrett PR, Langmuir, 14(1), 31 (1998)
Todorov PD, Kralchevsky PA, Denkov ND, Broze G, Mehreteab A, J. Colloid Interface Sci., 245(2), 371 (2002)
Williams CL, Bhakta AR, Neogi P, J. Phys. Chem. B, 103(16), 3242 (1999)
Kim BJ, Im SS, Oh SG, Langmuir, 17(2), 565 (2001)
Hoang KC, Mecozzi S, Langmuir, 20(18), 7347 (2004)
Prak DJ, Abriola LM, Weber WJ, Bocskay KA, Environ. Sci. Technol., 34, 476 (2000)
Lim JC, Miller CA, Yang CH, Colloids and Surfaces, 66, 45 (1992)
Lee SK, Han JW, Kim BH, Shin PG, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 10(4), 537 (1999)
Lee SK, Han JW, Kim BH, Shin PG, Park SK, Lim JC, HWAHAK KONGHAK, 38(2), 179 (2000)
Han JW, Lim JC, Korean Chem. Eng. Res., 45(3), 226 (2007)
Lim JC, Korean Chem. Eng. Res., 45(3), 219 (2007)
Lim J, J. Korean Ind. Eng. Chem., 19(1), 59 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로