Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 7, 2015
Accepted September 17, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성
Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk national Univ., Chungdea-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, February 2016, 54(1), 16-21(6), 10.9713/kcer.2016.54.1.16 Epub 12 February 2016
Download PDF
Abstract
실리콘의 부피팽창과 낮은 전기전도도를 개선하기 위하여 Silicon/Carbon/CNT 복합체를 제조하였다. Silicon/Carbon/CNT 합성물은 SBA-15를 합성한 후, 마그네슘 열 환원 반응으로 Silicon/MgO를 제조하여 Phenolic resin과 CNT를 첨가하여 탄화하는 과정을 통해 합성하였다. 제조된Silicon/Carbon/CNT 합성물은 XRD, SEM, BET, EDS를 통해 특성을 분석하였다. 본 연구에서는 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 CNT 첨가량에 따른 전기화학적 효과를 조사하였다. LiPF6 (EC:DMC:EMC=1 :1 :1 vol%) 전해액에서 Silicon/Carbon/CNT 음극활물질을 사용하여 제조한 코인셀은 CNT 함량이 7 wt% 일 때 1,718 mAh/g으로 높은 용량을 나타내었다. 코인셀의 사이클 성능은 CNT 첨가량이 증가할수록 개선되었다. 11 wt%의 CNT를 첨가한 Silicon/Carbon/CNT 음극은 두 번째 사이클 이후 83%의 높은 용량 보존율을 나타냄을 알 수 있었다.
Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of LiPF6 dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.
Keywords
References
Ko HS, Choi JE, Lee JD, Korean Chem. Eng. Res., 52(1), 52 (2014)
Jeon BJ, Kang SW, Lee JK, Korean J. Chem. Eng., 23(5), 854 (2006)
Pan LI, Wang H, Gao D, Chen S, Tan L, Li L, Royal Soc. Chem., 50, 5878 (2014)
Zhou XY, Tang JJ, Yang J, Xie J, Ma LL, Electrochim. Acta, 87, 663 (2013)
Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J, Electrochem. Commun., 29, 67 (2013)
Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ, Electrochim. Acta, 136, 112 (2014)
Li H, Lu CX, Zhang BP, Electrochim. Acta, 120, 96 (2014)
Liu Y, Wen ZY, Wang XY, Hirano A, Imanishi N, Takeda Y, J. Power Sources, 189(1), 733 (2009)
Cetinkaya T, Guler MO, Akbulut H, Microelectron. Eng., 108, 169 (2013)
Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Adv. Powder Technol., 24(6), 921 (2013)
Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
Wang YG, Zhang FY, Wang YQ, Ren JW, Li CL, Liu XH, Guo Y, Guo YL, Lu GZ, Mater. Chem. Phys., 115(2-3), 649 (2009)
Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(1), 80 (2015)
Li HH, Wang JW, Wu XL, Sun HZ, Yang FM, Wang K, Zhang LL, Fan CY, Zhang JP, Royal Soc. Chem., 4, 36218 (2014)
Jeon BJ, Kang SW, Lee JK, Korean J. Chem. Eng., 23(5), 854 (2006)
Pan LI, Wang H, Gao D, Chen S, Tan L, Li L, Royal Soc. Chem., 50, 5878 (2014)
Zhou XY, Tang JJ, Yang J, Xie J, Ma LL, Electrochim. Acta, 87, 663 (2013)
Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J, Electrochem. Commun., 29, 67 (2013)
Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ, Electrochim. Acta, 136, 112 (2014)
Li H, Lu CX, Zhang BP, Electrochim. Acta, 120, 96 (2014)
Liu Y, Wen ZY, Wang XY, Hirano A, Imanishi N, Takeda Y, J. Power Sources, 189(1), 733 (2009)
Cetinkaya T, Guler MO, Akbulut H, Microelectron. Eng., 108, 169 (2013)
Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Adv. Powder Technol., 24(6), 921 (2013)
Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
Wang YG, Zhang FY, Wang YQ, Ren JW, Li CL, Liu XH, Guo Y, Guo YL, Lu GZ, Mater. Chem. Phys., 115(2-3), 649 (2009)
Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(1), 80 (2015)
Li HH, Wang JW, Wu XL, Sun HZ, Yang FM, Wang K, Zhang LL, Fan CY, Zhang JP, Royal Soc. Chem., 4, 36218 (2014)