Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 4, 2021
Accepted October 26, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가
Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1 1충남대학교 신소재공학과, 34134 대전광역시 유성구 대학로 99
Department of Chemical Engineering, Chungbuk National University, 1, Chungdea-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea 1Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, Chungnam, 34134, Korea
jonglee@cnu.ac.kr
Korean Chemical Engineering Research, May 2022, 60(2), 175-183(9), 10.9713/kcer.2022.60.2.175 Epub 27 April 2022
Download PDF
Abstract
자동차 시장의 확대에 따라 자동차 모터의 필수 소재로 희토류금속인 Nd에 대한 수요가 급증하고 있다. Nd를 제조 하기 위하여 Nd2O3와 Ca계 합금의 열 환원반응에 관한 연구가 활발히 진행되어 왔다. 본 연구에서는 Nd2O3의 환원제 로 사용되는 Ca계 합금인 Ca-Cu를 CaCl2 용융염에서 전기분해반응을 통해 제조하였다. 전기분해반응의 작업 전극과 상대전극으로는 Cu 와이어와 흑연을 각각 사용하였다. 기준전극은 AgCl:CaCl2=1:99 mol%로 혼합한 혼합물에 Ag 와 이어를 넣어 제작하였다. 순환전압 전류법 결과에 의하면 -1.8 V의 전위부터 작업전극의 표면에 Ca2+의 증착이 관찰 되었으며, CaCl2 염의 온도가 증가할수록 Ca2+의 환원전위가 감소하였다. 시간대전류법 실험을 통해 계산된 Ca2+의 확 산계수는 5.4(±6.8)×10-6 cm2/s으로 나타났다. 또한, Cu 전극에 일정한 전위를 가해 Ca-Cu 액상합금을 제조하였으며 제 조된 합금은 EDS line scan을 통해 인가 전위의 증가에 따라 Ca의 전기화학적 삽입이 증가함을 확인하였다. -2.0 V보 다 음의 전위를 인가하여 제조한 Ca-Cu 합금의 조성비는 Ca:Cu=1:4임을 확인하였다.
With the expansion of the automobile market, the demand for Nd as an essential rare earth material for automobile motors is rapidly increasing. Research on the calcio-thermic reduction process between Nd2O3 and calciumbased alloys has been extensively studied in order to manufacture Nd. In this study, Ca-Cu, as a reducing for Nd2O3, was prepared by electrolysis in CaCl2 molten salt. Cu wire and graphite were employed as a working electrode and a counter electrode for electrolysis reaction, respectively. The reference electrode was manufactured by putting Ag wire in a mixture of AgCl and CaCl2 at a ratio of 1:99 mol%. The cyclic voltammetry results showed that the deposition of Ca2+ on the surface of working electrode was observed from a potential of -1.8 V, and the reduction potential of Ca2+ decreased as the reaction temperature increased. The diffusion coefficient of Ca2+ calculated by the chronoamperometry experiment was found to be 5.4(±6.8)×10-6 cm2/s. In addition, Ca-Cu liquid alloy was prepared by applying a constant potential to Cu electrodes. The element ratio of Ca-Cu alloy formed by applying a potential of -2.0 V was found to Ca:Cu=1:4.
References
Pillay P, Krishnan R, IEEE Trans. Ind. Electron., 35(4), 537 (1988)
Herbst JP, Croat JJ, J. Magn. Magn. Mater., 100, 57 (1991)
Dent PC, Appl. Phys., 111(7), 07A721 (2012)
Thudum R, Srivastava A, Nandi S, Nagaraj A, Shekhar R, Process. Extr. Metall., 119(2), 88 (2013)
Ryu HY, Ji HS, Jeong SM, Simpson MF, J. Chem. Eng. Jpn., 47(9), 750 (2014)
Park HK, Lee JY, Cho SW, Kim JS, Korean Inst. Resources Recycling, 212(3), 74 (2012)
Lee MW, Choi EY, Jeon SC, Lee J, Park SB, Paek SW, Electrochem. Commun., 72, 23 (2016)
Lim JG, Jeong SM, Korean Chem. Eng. Res., 53(2), 145 (2015)
Ji HS, Ryu HY, Choi EY, Cho SW, Simpson MF, Jeong SM, J. Ind. Eng. Chem., 24, 259 (2015)
Sharma RA, JOM, 39, 33 (1987)
Firdaus M, Rhamdhani MA, Durandet Y, Rankin WJ, Mcgreogr K, J. Sustain. Metall, 2, 276 (2016)
Chambers MF, Murphy JE, “Electrolytic Production of Neodymium Metal from a Molten Chloride Electrolyte,” BUREAU OF MINES, RI 9391(1992).
Sharma RA, Seefurth RN, Electrochem. Soc., 1987-7, 846 (1987)
Ferro PD, Mishra B, Olson DL, Averill WA, Waste Manage., 17(7), 451 (1997)
Mohandas KS, Fray DJ, Trans. Indian Inst. Met, 57(6), 579 (2004)
Mohandas KS, Int. J. Miner., 112(4), 195 (2013)
George JJ, Academic Press, 376 (1967)
Fray DJ, JOM, 53, 27 (2001)
Stefanidaki E, Hasiotis C, Kontoyannis C, Electrochim. Acta, 46(17), 2665 (2001)
Nasirpouri F, Prot. Met. Phys. Chem. Surf., 47(4), 534 (2011)
Kolb DM, Adv. Electrochem. Electrochem. Eng., 11, 125 (1978)
Pauling HJ, Staikov G, Juttner K, J. Electroanal. Chem., 376(1-2), 179 (1994)
Vishnu SM, Sanil N, Mohandas KS, J. Pure. Appl. Chem., 15(1), 1 (2017)
Bort K, Juttner WJ, Staikov G, Budevski E, Electrochim. Acta
Cavalieri O, Bittner AM, Kind H, Kern K, Greber T, Z. Phys. Chem., 208, 107 (1999)
Danilov AI, Molodkina EB, Polukarov YM, Russ. J. Electrochem., 34, 1249 (1998)
Chakrabarti DJ, Laughlin DE, Bull. Alloy Phase Diagrams, 5, 570 (1984)
Jeong SM, Shin HS, Cho SH, Hur JM, Lee HS, Electrochim. Acta, 55(5), 1749 (2010)
Ozdirik B, Baert K, Depover T, Vereecken J, Verbeken K, Terryn H, Graeve ID, J. Electrochem. Soc., 164(13), C747 (2017)
Danilov AI, Molodkina EB, Polukarov, Rudnev, AV, Polukarov YM, Feliu JM, Electrochim. Acta, 50, 5032 (2000)
Danilov AI, Molodkina EB, Polukarov YM, Climent V, Feliu JM, Electrochim. Acta, 46, 3137 (2001)
Yasuda K, Shimano T, Hagiwara R, Homma T, Nohira T, J. Electrochem. Soc., 164(8), H5049 (2017)
Herbst JP, Croat JJ, J. Magn. Magn. Mater., 100, 57 (1991)
Dent PC, Appl. Phys., 111(7), 07A721 (2012)
Thudum R, Srivastava A, Nandi S, Nagaraj A, Shekhar R, Process. Extr. Metall., 119(2), 88 (2013)
Ryu HY, Ji HS, Jeong SM, Simpson MF, J. Chem. Eng. Jpn., 47(9), 750 (2014)
Park HK, Lee JY, Cho SW, Kim JS, Korean Inst. Resources Recycling, 212(3), 74 (2012)
Lee MW, Choi EY, Jeon SC, Lee J, Park SB, Paek SW, Electrochem. Commun., 72, 23 (2016)
Lim JG, Jeong SM, Korean Chem. Eng. Res., 53(2), 145 (2015)
Ji HS, Ryu HY, Choi EY, Cho SW, Simpson MF, Jeong SM, J. Ind. Eng. Chem., 24, 259 (2015)
Sharma RA, JOM, 39, 33 (1987)
Firdaus M, Rhamdhani MA, Durandet Y, Rankin WJ, Mcgreogr K, J. Sustain. Metall, 2, 276 (2016)
Chambers MF, Murphy JE, “Electrolytic Production of Neodymium Metal from a Molten Chloride Electrolyte,” BUREAU OF MINES, RI 9391(1992).
Sharma RA, Seefurth RN, Electrochem. Soc., 1987-7, 846 (1987)
Ferro PD, Mishra B, Olson DL, Averill WA, Waste Manage., 17(7), 451 (1997)
Mohandas KS, Fray DJ, Trans. Indian Inst. Met, 57(6), 579 (2004)
Mohandas KS, Int. J. Miner., 112(4), 195 (2013)
George JJ, Academic Press, 376 (1967)
Fray DJ, JOM, 53, 27 (2001)
Stefanidaki E, Hasiotis C, Kontoyannis C, Electrochim. Acta, 46(17), 2665 (2001)
Nasirpouri F, Prot. Met. Phys. Chem. Surf., 47(4), 534 (2011)
Kolb DM, Adv. Electrochem. Electrochem. Eng., 11, 125 (1978)
Pauling HJ, Staikov G, Juttner K, J. Electroanal. Chem., 376(1-2), 179 (1994)
Vishnu SM, Sanil N, Mohandas KS, J. Pure. Appl. Chem., 15(1), 1 (2017)
Bort K, Juttner WJ, Staikov G, Budevski E, Electrochim. Acta
Cavalieri O, Bittner AM, Kind H, Kern K, Greber T, Z. Phys. Chem., 208, 107 (1999)
Danilov AI, Molodkina EB, Polukarov YM, Russ. J. Electrochem., 34, 1249 (1998)
Chakrabarti DJ, Laughlin DE, Bull. Alloy Phase Diagrams, 5, 570 (1984)
Jeong SM, Shin HS, Cho SH, Hur JM, Lee HS, Electrochim. Acta, 55(5), 1749 (2010)
Ozdirik B, Baert K, Depover T, Vereecken J, Verbeken K, Terryn H, Graeve ID, J. Electrochem. Soc., 164(13), C747 (2017)
Danilov AI, Molodkina EB, Polukarov, Rudnev, AV, Polukarov YM, Feliu JM, Electrochim. Acta, 50, 5032 (2000)
Danilov AI, Molodkina EB, Polukarov YM, Climent V, Feliu JM, Electrochim. Acta, 46, 3137 (2001)
Yasuda K, Shimano T, Hagiwara R, Homma T, Nohira T, J. Electrochem. Soc., 164(8), H5049 (2017)