ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 20, 2021
Accepted November 16, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries

충북대학교 화학공학과, 28644 충북 청주시 서원구 충대로 1 1에스엔피랩, 28116 충청북도 청주시 청원구 오창읍 성산질푼이길 12-47 2성진코퍼레이션(주), 28184 충북 청주시 서원구 저산척북로 413
Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea 1SNPLAB co. Ltd., 45, Yangcheong 4-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Korea 2Sungjin Corp., Ltd, 413 Jeosancheokbuk-ro, Sewon-gu, Cheongju, Chungbuk, 28184, Korea
smjeong@chungbuk.ac.kr
Korean Chemical Engineering Research, May 2022, 60(2), 184-192(9), 10.9713/kcer.2022.60.2.184 Epub 27 April 2022
downloadDownload PDF

Abstract

수열합성을 통해 합성한 다공성 NiO는 리튬 폴리설파이드의 용출을 억제하기 위하여 리튬-황 전지의 전극에 사용 되었다. 리튬-황 전지의 전극은 경제적이고 간단한 진공 여과 방법을 이용하여 집전체와 바인더가 없는 프리스탠딩 플 렉서블 전극으로 제작되었다. 다공성 NiO를 첨가한 S/CNT/NiO 전극은 순수 S/CNT 전극에 비해 125 mA h g-1 증가 한 877 mA h g-1 (0.2 C)의 초기 방전용량과 200 사이클 후 84% (S/CNT: 66%)의 우수한 용량 유지율을 나타내었다. 이는 방전 과정 중에서 NiO와 리튬 폴리설파이드의 강한 화학적 결합에 의하여 리튬 폴리설파이드의 전해질로 용출되는 것 을 억제하여 나타난 결과이다. 또한 S/CNT/NiO 전극의 유연성 테스트를 위해 1.6 × 4 cm2의 파우치셀로 제작하여 폴 딩한 상태와 하지 않은 상태에서 모두 620 mA h g-1의 안정적인 사이클 특성을 나타내었다.
Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/ NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

References

Kim T, Song W, Son DY, Ono LK, Qi Y, J. Mater. Chem. A, 7(7), 2942 (2019)
Ould Ely T, Kamzabek D, Chakraborty D, Doherty MF, ACS Appl. Eng. Mater., 1(5), 1783 (2018)
Wang ZY, Han DD, Liu S, Li GR, Yan TY, Gao XP, Electrochim. Acta, 337 (2020)
Saroha R, Ahn JH, Cho JS, Korean J. Chem. Eng., 38(3), 461 (2021)
Yang C, Li P, Yu J, Zhao LD, Kong L, Energy, 201 (2020)
Jin E, Lee G, Na B, Jeong M, Korean Chem. Eng. Res., 55(2), 163 (2017)
Jo M, Cho J, Korean Chem. Eng. Res., 57(2), 267 (2019)
Lee Y, Jeong S, Cho J, Korean Chem. Eng. Res., 56(6), 819 (2018)
Gueon D, Hwang JT, Yang SB, Cho E, Sohn K, Yang DK, Moon JH, ACS Nano., 12(1), 226 (2018)
Manthiram A, Fu Y, Chung SH, Zu C, Su YS, Chem. Rev., 114(23), 11751 (2014)
Saroha R, Oh JH, Seon YH, Kang YC, Lee JS, Jeong DW, Cho JS, J. Mater. Chem. A, 9(19), 11651 (2021)
Zhu M, Tang J, Wei W, Li S, Mater. CHem. Front., 4(4), 1105 (2020)
Raulo A, Bandyopadhyay S, Ahamad S, Gupta A, Srivastava R, Formanek P, Nandan B, J. Power Sources, 431, 250 (2019)
Zhang J, Yang CP, Yin YX, Wan LJ, Guo YG, Adv. Mater., 28(43), 9539 (2016)
Liu S, Li Y, Zhang C, Chen X, Wang Z, Cui F, Yang X, Yue W, Electrochim. Acta, 332 (2020)
Xu ZL, Kim JK, Kang K, Nano Today, 19, 84 (2018)
Gong Q, Gu S, Li J, Wang Q, Sun X, Zhou G, ChemNanoMat., 6(5), 827 (2020)
Jin K, Zhou X, Zhang L, Xin X, Wang G, Liu Z, J. Phys. Chem. C, 117(41), 21112 (2013)
Zhang YZ, Zhang Z, Liu S, Li GR, Gao XP, ACS Appl Mater Interfaces, 10(10), 8749 (2018)
Fan L, Zhuang HL, Zhang K, Cooper VR, Li Q, Lu Y, Adv. Sci., 3(12), 1600175 (2016)
Xia Y, Fang R, Xiao Z, Huang H, Gan Y, Yan R, Lu X, Liang C, Zhang J, Tao X, Zhang W, ACS Appl Mater Interfaces, 9(28), 23782 (2017)
Li C, Sui XL, Wang ZB, Wang Q, Gu DM, Chem. Eng. J., 326, 265 (2017)
Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H, Nano Lett., 11(7), 2644 (2011)
Yan L, Gao X, Thomas JP, Ngai J, Altounian H, Leung KT, Meng Y, Li Y, Sust. Eng. Fuel., 2(7), 1574 (2018)
Oschmann B, Park J, Kim C, Char K, Sung YE, Zentel R, Chem. Mater., 27(20), 7011 (2015)
Chelladurai K, Venkatachalam P, Rengapillai S, Liu WR, Huang CH, Marimuthu S, Polymer, 12(4), 755 (2020)
Zhao X, Wang J, Sun X, Wei K, Wang W, Wang A, Huang Y, Guan Y, J. Electrochem. Soc., 168(4), 040506 (2021)
Ponraj R, Kannan AG, Ahn JH, Kim DW, ACS Appl. Mater. Interfaces, 8(6), 4000 (2016)
Shao H, Wang W, Zhang H, Wang A, Chen X, Huang Y, J. Power Sources, 378, 537 (2018)
Chen H, Dong WD, Xia FJ, Zhang YJ, Yan M, Song JP, Zou W, Liu Y, Hu ZY, Liu J, Li Y, Wang HE, Chem. Eng. J., 381, 122746 (2020)
Guo Y, Li J, Pitcheri R, Zhu J, Wen P, Qiu Y, Chem. Eng. J., 355, 390 (2019)
Liu Q, Jiang Q, Jiang L, Peng J, Gao Y, Duan Z, Lu X, Appl. Surf. Sci., 462, 393 (2018)
Liu M, Hou J, Xiang J, Shen X, Luan K, Zhang Y, J. Nanosci. Nanotechnol., 18(11), 7824 (2018)
Campbell B, Bell J, Bay HH, Favors Z, Ionescu R, Ozkan CS, Ozkan M, Nanoscale, 7(16), 7051 (2015)
Jia X, Liu B, Liu J, Zhang S, Sun Z, He X, Li H, Wang G, Chang H, RSC Adv., 11(18), 10753 (2021)
Ghosh A, Manjunatha R, Kumar R, Mitra S, ACS Appl. Mater. Interfaces, 8(49), 33775 (2016)
Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z, Nat. Commun., 8, 14628 (2017)
Lee WY, Jin EM, Cho JS, Kang DW, Jin B, Jeong SM, Energy, 212 (2020)
Chang CH, Chung SH, Manthiram A, Mater. Horizons., 4(2), 249 (2017)
Mentbayeva A, Belgibayeva A, Umirov N, Zhang Y, Taniguchi I, Kurmanbayeva I, Bakenov Z, Electrochim. Acta, 217, 242 (2016)
Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y, Nanoscale, 8, 13638 (2016)
Seh ZW, Sun Y, Zhang Q, Cui Y, Chem. Soc. Rev., 45(20), 5605 (2016)
Chung SH, Manthiram A, Adv. Funct. Mater., 24(33), 5299 (2014)
Yan L, Luo N, Kong W, Luo S, Wu H, Jiang K, Li Q, Fan S, Duan W, Wang J, J. Power Sources, 389, 169 (2018)
Qu L, Liu P, Yi Y, Wang T, Yang P, Tian X, Li M, Yang B, Dai S, ChemSusChem, 12(1), 213 (2019)
Song H, Suh S, Park H, Jang D, Kim J, Kim HJ, J. Ind. Eng. Chem., 99, 309 (2021)
Zhang Z, Li Q, Zhang K, Chen W, Lai Y, Li J, J. Power Sources, 290, 159 (2015)
Singhal R, Chung SH, Manthiram A, Kalra V, J. Mater. Chem. A, 3(8), 4530 (2015)
Li M, Zhou J, Zhou J, Guo C, Han Y, Zhu Y, Wang G, Qian Y, Mater. Res. Bull., 96, 509 (2017)
Mukkabla R, Meduri P, Deepa M, Shivaprasad SM, Ghosal P, J. Power Sources, 342, 202 (2017)
Carbone L, Verrelli R, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J, New J. Chem., 40(3), 2935 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로