Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 2, 2022
Accepted April 5, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
부유 및 퇴적의 분체 조건이 화재폭발 특성에 미치는 영향
Effect of Powder Condition on the Fire and Explosion Characteristics of Suspended and Deposited Dusts
한국산업안전보건공단 산업안전보건연구원, 34122 대전광역시 유성구 엑스포로 339번길 30
Occupational Safety & Health Research Institute, Kosha, 339-30 Exporo, Yuseong-gu, Daejeon, 34122, Korea
hanpaule@kosha.or.kr
Korean Chemical Engineering Research, May 2022, 60(2), 229-236(8), 10.9713/kcer.2022.60.2.229 Epub 27 April 2022
Download PDF
Abstract
동일 분체특성의 분진이 평균입경, 농도, 분진조건(부유 또는 퇴적) 변화에 따른 화재폭발 위험성을 조사하였다. 이를 위해 20L분진폭발시험장치, 열중량분석장치, 연소속도시험장치(UN시험법)를 사용하였다. 4종 분진(Sugar, Mg, Al, Zr) 의 입경이 서로 다른 8개 분진 시료에 대하여 부유 분진의 폭발특성과 화염전파속도(FPV), 그리고 퇴적분진의 화염확 산속도(FSV)를 조사하였다. 부유 분진 조건에서 Mg 및 Al 분진은 입경이 감소하면 폭발 위험성이 증가하였지만, Sugar 는 입경 변화에 따른 폭발 위험성의 영향이 거의 나타나지 않았다. 부유 분진의 화염전파속도(FPV)는 마이크로 범위 에서의 입경 변화보다 마이크로에서 나노로 입경이 감소하면 크게 증가하였다. 퇴적층의 화염확산속도(FSV)는 수평면 (기울기 0°)보다 경사면(기울기 30°)에서 증가하는 경향을 나타냈으며, 경사면(기울기 30°) 퇴적층 조건에서는 상방 전 파가 하방 전파보다 높게 나타났다.
An experimental investigation was conducted on the influences of median size, dust concentration, dust condition (cloud and layer) for the fire and explosion hazard assessment of dusts with the same powder property. For this purpose, tests have been performed in accordance with 20 L explosion sphere, thermogravi- metric analyze, combustion rate tester (UN method). We investigated the explosion characteristics and flame propagation velocity (FPV) in dust cloud and the flame spread velocity(FSV) over dust layer on 8 dust samples with different particle sizes of 4 types of dusts (Sugar, Mg, Al, Zr). An explosion hazard increased with decreasing particle size in Mg and Al dust clouds, but sugar did not show the effect of explosion hazard due to particle size change in dust clouds. The flame propagation velocity (FPV) of suspended dusts increased significantly when the particle size decreased from micro to nano than the variation of particle size in micro range. The flame spread velocity (FSV) over dust layer showed a tendency to increase over the inclined dust layers (30° slope) rather than the horizontal dust layers (0° slope). The flame spread rate (FSV) over dust layers increased on the inclined dust layer (30° slope) rather than the horizontal dust layer (0° slope) and was higher upward flame than the downward flame in condition of inclined dust layers(30° slope).
References
VDI-2263, Dust Fires and Dust Explosions ; Hazards, Assessment, Protective Measures (2018).
Han OS, “Combustion Characteristics Assessment of Flammable Solids by GHS Classification Criteria,” KOSHA, 2020- OSHRI-1039, 27-30(2020).
Kim HM, Hwang CC, Combust. Flame, 105, 471 (1996)
Saad, El-Sayed A, Abdel-Latif AM, J. Loss Prev. Process Ind., 13, 509 (2000)
Fawaz, Sweis K, J. Loss Prev. Process Ind., 17, 505 (2004)
Janes A, Carson D, Accorsi A, Chaineaux J, J. Hazard. Mater., 159, 528 (2008)
Agnes J, Alexis V, Olivier D, J. Loss Prev. Process Ind., 59, 106 (2019)
Song Y, Zhang Q, Fuel, 267, 117205 (2020)
Huang L, Jiang H, Gao W, J. Loss Prev. Process Ind., 71, 1 (2021)
Polka M, Salamonowicz Z, Wolinski M, Kukfisz B, Procedia Eng., 45, 414 (2012)
BS EN 50281-2-1; Electrical Apparatus for Use in the Presence of Combustible Dust - Part 2-1: Test Methods -Methods of Determining Minimum Ignition Temperatures (1999).
Danzi E, Marmo L, Riccio D, J. Loss Prev. Process Ind., 36, 326 (2015)
EN 14034-1, “Determination of Explosion Characteristics of Dust Clouds-Part 1 : Determination of the Maximum Explosion Pressure Pmax of Dust Clouds,” (2004).
EN 14034-2, “Determination of Explosion Characteristics of Dust Clouds-Part 2: Determination of the Maximum Rate of Explosion Pressure Rise (dP/dt)max of Dust Clouds,” (2006).
EN 14034-3, “Determination of Explosion Characteristics of Dust Clouds-Part 3: Determination of the Lower Explosion Limit LEL of Dust Clouds,” (2006).
Han OS, Lee KW, Korean Chem. Eng. Res., 54(3), 367 (2016)
Recommendations on the Transport of Dangerous Goods, Manual of Test and Criteria, 7th Revised Edition, UN, 353-358(2019).
Han OS, “Hazard Evaluation of Ignition and Fire-Explosion by Powder Condition in the Process,” KOSHA, 2021-OSHRI-861, 45-47(2021).
Database for Major industrial accidents, Korea Occu pational Safety and Health Agency(2000~2021).
Sundaram DS, Puri P, Yang V, Combust. Flame, 169, 94 (2016)
Chang PJ, Mogi T, Dobashi T, J. Loss Prev. Process Ind., 68, 104266 (2020)
Dufaud O, Traoré M, Perrin L, J. Loss Prev. Process Ind., 23, 226 (2010)
Han OS, Korean Chem. Eng. Res., 55(5), 629 (2017)
Kudo Y, Torikai H, Ito A, Fire Safety J., 45, 122 (2010)
Huang Y, Risha GA, Yang V, Yetter RA, Combust. Flame, 156, 5 (2009)
Myers TJ, J. Hazard. Mater., 159, 72 (2008)
Zhao J, Tang G, Zhang Y, Sun J, Int. J. Heat Mass Transf., 90, 1046 (2015)
Yuan C, Cai J, Amyotte P, Li C, Bu Y, Liu K, Li G, J. Hazard. Mater., 346, 19 (2018)
Han OS, “Combustion Characteristics Assessment of Flammable Solids by GHS Classification Criteria,” KOSHA, 2020- OSHRI-1039, 27-30(2020).
Kim HM, Hwang CC, Combust. Flame, 105, 471 (1996)
Saad, El-Sayed A, Abdel-Latif AM, J. Loss Prev. Process Ind., 13, 509 (2000)
Fawaz, Sweis K, J. Loss Prev. Process Ind., 17, 505 (2004)
Janes A, Carson D, Accorsi A, Chaineaux J, J. Hazard. Mater., 159, 528 (2008)
Agnes J, Alexis V, Olivier D, J. Loss Prev. Process Ind., 59, 106 (2019)
Song Y, Zhang Q, Fuel, 267, 117205 (2020)
Huang L, Jiang H, Gao W, J. Loss Prev. Process Ind., 71, 1 (2021)
Polka M, Salamonowicz Z, Wolinski M, Kukfisz B, Procedia Eng., 45, 414 (2012)
BS EN 50281-2-1; Electrical Apparatus for Use in the Presence of Combustible Dust - Part 2-1: Test Methods -Methods of Determining Minimum Ignition Temperatures (1999).
Danzi E, Marmo L, Riccio D, J. Loss Prev. Process Ind., 36, 326 (2015)
EN 14034-1, “Determination of Explosion Characteristics of Dust Clouds-Part 1 : Determination of the Maximum Explosion Pressure Pmax of Dust Clouds,” (2004).
EN 14034-2, “Determination of Explosion Characteristics of Dust Clouds-Part 2: Determination of the Maximum Rate of Explosion Pressure Rise (dP/dt)max of Dust Clouds,” (2006).
EN 14034-3, “Determination of Explosion Characteristics of Dust Clouds-Part 3: Determination of the Lower Explosion Limit LEL of Dust Clouds,” (2006).
Han OS, Lee KW, Korean Chem. Eng. Res., 54(3), 367 (2016)
Recommendations on the Transport of Dangerous Goods, Manual of Test and Criteria, 7th Revised Edition, UN, 353-358(2019).
Han OS, “Hazard Evaluation of Ignition and Fire-Explosion by Powder Condition in the Process,” KOSHA, 2021-OSHRI-861, 45-47(2021).
Database for Major industrial accidents, Korea Occu pational Safety and Health Agency(2000~2021).
Sundaram DS, Puri P, Yang V, Combust. Flame, 169, 94 (2016)
Chang PJ, Mogi T, Dobashi T, J. Loss Prev. Process Ind., 68, 104266 (2020)
Dufaud O, Traoré M, Perrin L, J. Loss Prev. Process Ind., 23, 226 (2010)
Han OS, Korean Chem. Eng. Res., 55(5), 629 (2017)
Kudo Y, Torikai H, Ito A, Fire Safety J., 45, 122 (2010)
Huang Y, Risha GA, Yang V, Yetter RA, Combust. Flame, 156, 5 (2009)
Myers TJ, J. Hazard. Mater., 159, 72 (2008)
Zhao J, Tang G, Zhang Y, Sun J, Int. J. Heat Mass Transf., 90, 1046 (2015)
Yuan C, Cai J, Amyotte P, Li C, Bu Y, Liu K, Li G, J. Hazard. Mater., 346, 19 (2018)