Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 11, 2022
Accepted February 28, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
생체 모방 폴리아민 복합체 기반의 크기 조절이 가능한 아민 기능화 실리카 나노입자의 합성
Synthesis of Size Controllable Amine-Functionalized Silica Nanoparticles Based on Biomimetic Polyamine Complex
충남대학교 공과대학 응용화학공학과, 34134 대전광역시 유성구 대학로 99
Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
rhadum@cnu.ac.kr
Korean Chemical Engineering Research, August 2022, 60(3), 407-413(7), 10.9713/kcer.2022.60.3.407 Epub 18 July 2022
Download PDF
Abstract
본 연구는 생체 모방 폴리아민 복합체를 통해 아민 그룹(amine group)이 기능화 되고 크기 조절이 간편한 실리카 나 노입자의 합성 방법에 관한 것이다. 먼저, 실리카 나노입자를 합성하기 위한 촉매로써 polyallylamine hydrochloride (PAH)와 인산 이온(phosphate ion)으로 구성된 폴리아민 나노 복합체를 형성하였다. 복합체의 크기는 pH 조건에 따라 가역적인 조절이 가능하다. 나노 복합체에 존재하는 PAH 주쇄의 다량의 아민 그룹들은 silicic acid의 축합(condensation) 반응을 촉매 하며, 결과적으로 실리카 나노입자를 매우 빠른 시간 내에 합성할 수 있다. 최종적으로 pH 조건에 따라 다양한 크기를 갖는 실리카 나노 입자를 합성하였다. 실리카 나노입자의 합성 과정에서 촉매 역할을 하는 PAH는 나 노입자의 내부 및 표면에 함입되고 합성된 실리카 나노입자의 표면에 아민 그룹이 노출된다. 본 방법은 실리카 나노입 자의 합성과 표면개질이 동시에 이루어지며, 아민 그룹이 도입된 실리카 나노입자를 다양한 크기로 조절하여 손쉽게 합성할 수 있다. 최종적으로, 본 연구에서 제시한 방법은 기존의 합성법 보다 온화한 조건 하에서 단시간 내에 실리카 나노입자를 합성할 수 있으며, 생체 공학 및 재료 분야에서 적용되어 넓게 활용될 수 있다.
This study demonstrates a method for synthesis of amine functionalized and easily size controllable silica nanoparticles through biomimetic polyamine complex. First, we generate a polyamine nanocomplex composed of polyallylamine hydrochloride (PAH) and phosphate ion (pi) to synthesize silica nanoparticles. The size of polyamine nanocomplex is reversibly adjusted within the range of about 50 to 300 nm according to the pH conditions. Amine groups of the PAH in the nanocomplex catalyzes the condensation reaction of silicic acid. As a results, silica nanoparticles are synthesized based on nanocomplex in a very short time. Finally, we synthesize silica nanoparticles with various sizes according to the pH conditions. In the process of synthesizing silica nanoparticles, polyamine chains that act as catalysts are incorporated into the inside and surface of the particles, subsequently, amine groups are exposed on the surface of silica nanoparticles. As a results, the synthesis and surface modification of silica nanoparticles are performed simultaneously, and the silica nanoparticles introduced with amine groups can be easily synthesized by adjusting the sizes of the silica nanoparticles. Finally, we demonstrate the synthesis of functional silica nanoparticles in a short time under milder conditions than the conventional synthetic method. Furthermore, this method can be applicable to bioengineering and materials fields.
References
Drummond C, McCann R, Patwardhan SV, Chem. Eng. J., 244, 483 (2014)
He Q, Shi J, J. Mater. Chem., 21(16) (2011)
Jeon HS, Park SE, Ahn B, Kim YK, Biotechnol. Bioprocess Eng., 22(2), 136 (2017)
Green DL, Lin JS, Lam YF, Hu MZC, J. Colloid Interface Sci., 266(2), 346 (2003)
Stöber W, Fink A, Bohn E, J. Colloid Interface Sci., 26(1), 62 (1968)
An CY, Lee BH, Song KC, Korean Chem. Eng. Res., 55(2), 247 (2017)
Graf C, Gao Q, Schutz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Langmuir, 28(20), 7598 (2012)
Lee EK, Cho K, Kim SK, Lim JS, Kim JN, Clean Technol., 24(1), 55 (2018)
Kim DY, Jin SH, Jeong SG, Lee B, Kang KK, Lee CS, Sci. Rep., 8(1), 8525 (2018)
Nguyen TH, Mai NT, Reddy VRM, Jung JH, Truong NTN, Korean J. Chem. Eng., 37(10), 1803 (2020)
Moon SY, Naik B, Park JY, Korean J. Chem. Eng., 33(8), 2325 (2016)
Rahman IA, Padavettan V, J. Nanomater., 2012, 1 (2012)
Hench LL, West JK, Chem. Rev., 90(1), 33 (1990)
Liberman A, Mendez N, Trogler WC, Kummel AC, Surf. Sci. Rep., 69(2-3), 132 (2014)
Bagwe RP, Hilliard LR, Tan W, Langmuir, 22(9), 4357 (2006)
Hsiao IL, Fritsch-Decker S, Leidner A, Al-Rawi M, Hug V, Diabate S, Grage SL, Meffert M, Stoeger T, Gerthsen D, Small, 15(10), 1805400 (2019)
Miller PJ, Shantz DF, Nanoscale Adv., 2(2), 860 (2020)
Wohl BM, Engbersen JF, J. Control. Release, 158(1), 2 (2012)
Li J, Qu X, Payne GF, Zhang C, Zhang Y, Li J, Ren J, Hong H, Liu C, Adv. Funct. Mater., 25(9), 1404 (2015)
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE, ACS Nano, 4(8), 4539 (2010)
Lutz K, Groger C, Sumper M, Brunner E, Phys. Chem. Chem. Phys., 7(14), 2812 (2005)
Kang KK, Oh HS, Kim DY, Shim G, Lee CS, J. Colloid Interface Sci., 507, 145 (2017)
Kim DY, Seo JH, Lee B, Kang KK, Lee CS, Clean Technol., 27(2), 115 (2021)
Neville F, Murphy T, Wanless EJ, Colloids Surf. A: Physicochem. Eng. Asp., 431, 42 (2013)
Nguyen QX, Belgard TG, Taylor JJ, Murthy VS, Halas NJ, Wong MS, Chem. Mater., 24(8), 1426 (2012)
Lechner CC, Becker CFW, Chem. Sci., 3(12) (2012)
Cranford SW, Ortiz C, Buehler MJ, Soft Matter, 6(17) (2010)
Pismenskaya N, Laktionov E, Nikonenko V, El Attar A, Auclair B, Pourcelly G, J. Membr. Sci., 181(2), 185 (2001)
Tran TN, Pham TVA, Le MLP, Nguyen TPT, Tran VM, Adv. Nat. Sci.-Nanosci. Nanotechnol., 4(4) (2013)
Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, Yu J, Sun G, RSC Adv., 1(8) (2011)
Nakagawa T, Soga M, J. Non-Cryst. Solids, 260(3), 167 (1999)
Guo M, Ding B, Li X, Wang X, Yu J, Wang M, J. Phys. Chem. C, 114(2), 916 (2010)
Mathapa BG, Paunov VN, Soft Matter, 9(19) (2013)
Serrano MP, Rafti M, Thomas AH, Borsarelli CD, RSC Adv., 9(33), 19226 (2019)
Paltrinieri L, Wang M, Sachdeva S, Besseling NAM, Sudhölter EJR, de Smet LCPM, J. Mater. Chem. A, 5(35), 18476 (2017)
Zhao HC, Wu XT, Tian WW, Ren ST, Adv. Mater. Res., 150, 1480 (2010)
Kuo PL, Chen WF, Liang WJ, J. Polym. Sci., 43, 3359 (2005)
He Q, Shi J, J. Mater. Chem., 21(16) (2011)
Jeon HS, Park SE, Ahn B, Kim YK, Biotechnol. Bioprocess Eng., 22(2), 136 (2017)
Green DL, Lin JS, Lam YF, Hu MZC, J. Colloid Interface Sci., 266(2), 346 (2003)
Stöber W, Fink A, Bohn E, J. Colloid Interface Sci., 26(1), 62 (1968)
An CY, Lee BH, Song KC, Korean Chem. Eng. Res., 55(2), 247 (2017)
Graf C, Gao Q, Schutz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Langmuir, 28(20), 7598 (2012)
Lee EK, Cho K, Kim SK, Lim JS, Kim JN, Clean Technol., 24(1), 55 (2018)
Kim DY, Jin SH, Jeong SG, Lee B, Kang KK, Lee CS, Sci. Rep., 8(1), 8525 (2018)
Nguyen TH, Mai NT, Reddy VRM, Jung JH, Truong NTN, Korean J. Chem. Eng., 37(10), 1803 (2020)
Moon SY, Naik B, Park JY, Korean J. Chem. Eng., 33(8), 2325 (2016)
Rahman IA, Padavettan V, J. Nanomater., 2012, 1 (2012)
Hench LL, West JK, Chem. Rev., 90(1), 33 (1990)
Liberman A, Mendez N, Trogler WC, Kummel AC, Surf. Sci. Rep., 69(2-3), 132 (2014)
Bagwe RP, Hilliard LR, Tan W, Langmuir, 22(9), 4357 (2006)
Hsiao IL, Fritsch-Decker S, Leidner A, Al-Rawi M, Hug V, Diabate S, Grage SL, Meffert M, Stoeger T, Gerthsen D, Small, 15(10), 1805400 (2019)
Miller PJ, Shantz DF, Nanoscale Adv., 2(2), 860 (2020)
Wohl BM, Engbersen JF, J. Control. Release, 158(1), 2 (2012)
Li J, Qu X, Payne GF, Zhang C, Zhang Y, Li J, Ren J, Hong H, Liu C, Adv. Funct. Mater., 25(9), 1404 (2015)
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE, ACS Nano, 4(8), 4539 (2010)
Lutz K, Groger C, Sumper M, Brunner E, Phys. Chem. Chem. Phys., 7(14), 2812 (2005)
Kang KK, Oh HS, Kim DY, Shim G, Lee CS, J. Colloid Interface Sci., 507, 145 (2017)
Kim DY, Seo JH, Lee B, Kang KK, Lee CS, Clean Technol., 27(2), 115 (2021)
Neville F, Murphy T, Wanless EJ, Colloids Surf. A: Physicochem. Eng. Asp., 431, 42 (2013)
Nguyen QX, Belgard TG, Taylor JJ, Murthy VS, Halas NJ, Wong MS, Chem. Mater., 24(8), 1426 (2012)
Lechner CC, Becker CFW, Chem. Sci., 3(12) (2012)
Cranford SW, Ortiz C, Buehler MJ, Soft Matter, 6(17) (2010)
Pismenskaya N, Laktionov E, Nikonenko V, El Attar A, Auclair B, Pourcelly G, J. Membr. Sci., 181(2), 185 (2001)
Tran TN, Pham TVA, Le MLP, Nguyen TPT, Tran VM, Adv. Nat. Sci.-Nanosci. Nanotechnol., 4(4) (2013)
Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, Yu J, Sun G, RSC Adv., 1(8) (2011)
Nakagawa T, Soga M, J. Non-Cryst. Solids, 260(3), 167 (1999)
Guo M, Ding B, Li X, Wang X, Yu J, Wang M, J. Phys. Chem. C, 114(2), 916 (2010)
Mathapa BG, Paunov VN, Soft Matter, 9(19) (2013)
Serrano MP, Rafti M, Thomas AH, Borsarelli CD, RSC Adv., 9(33), 19226 (2019)
Paltrinieri L, Wang M, Sachdeva S, Besseling NAM, Sudhölter EJR, de Smet LCPM, J. Mater. Chem. A, 5(35), 18476 (2017)
Zhao HC, Wu XT, Tian WW, Ren ST, Adv. Mater. Res., 150, 1480 (2010)
Kuo PL, Chen WF, Liang WJ, J. Polym. Sci., 43, 3359 (2005)