Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 13, 2022
Accepted February 23, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
기-액 하이브리드 대기압 플라즈마 반응기 제작 및 특성 분석
Fabrication and Characterization of Gas-liquid Hybrid Reactor Equipped with Atmospheric Pressure Plasma
강원대학교 화공·생물공학부, 24341 강원도 춘천시 강원대학길1
Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Kangwon, 24341, Korea
wglee@kangwon.ac.kr
Korean Chemical Engineering Research, August 2022, 60(3), 452-458(7), 10.9713/kcer.2022.60.3.452 Epub 18 July 2022
Download PDF
Abstract
3가지 종류의 기-액 하이브리드 수평형, 수직형 그리고 needle-to-cylinder형 플라즈마 반응기가 제작되었다. 이들 반 응기를 통하여 대기압 플라즈마 방전에서 발생하는 반응 활성종 생성과 전극 내의 전위차를 통한 세정성분의 기-액 활 성화 반응을 일으키는 고효율 친환경 기반의 세정 개념을 제시하였다. 세정성능에 대한 효율성을 비교한 결과, needleto- cylinder형 반응기가 가장 우수한 특성을 가졌다. 본 연구를 통해 기-액 하이브리드 대기압 플라즈마 반응기가 반도 체 공정 등 초정밀 세정공정에 응용 가능성이 있음을 확인하였다.
Three types of gas-liquid hybrid horizontal, vertical and needle-to-cylinder plasma reactors were fabricated. Through these reactors, a high-efficiency, eco-friendly cleaning concept that generates reactive active species generated in atmospheric plasma discharge and gas-liquid activation reaction of cleaning components through the potential difference within the electrode was presented. As a result of comparing the efficiency for cleaning performance, the needle-to-cylinder type reactor had the best characteristics. Through this study, it was confirmed that the gas-liquid hybrid atmospheric pressure plasma reactor has the potential to be applied to ultra-precision cleaning processes such as semiconductor processes.
Keywords
References
Reinhardt KA, Kern W, Handbook of Silicon Wafer Cleaning Technology, 3rd ed., Elsevier(2018).
Ko CK, Lee WG, Korean Chem. Eng. Res., 54(4), 548 (2016)
Yamabe C, Takeshita F, Miichi T, Hayashi N, Ihara S, Plasma Process. Polym., 2, 246 (2005)
Kim MS, Ryu KH, Lee KJ, J. Korean Powder Metall. Inst., 28(1), 25 (2021)
Nomura S, Toyota H, “Submerged Plasma Generator, Method of Generating Plasma in Liquid and Method of Decomposing Toxi Substance with Plasma in Liquid,” (2007)
Bruggeman P, Leys C, J. Phys. D-Appl. Phys., 42(5), 053001 (2009)
Chang J, Dickson S, Guo Y, Urashima K, Emelko M, Advanced Plasma Technology, Wiley-VCH, 421-433 (2008).
Locke BR, Shih K, Plasma Sources Sci. Technol., 20(3), 034006 (2011)
Schoenbach K, Kolb J, Xiao S, Katsuki S, Minamitani Y, Joshi R, Plasma Sources Sci. Technol., 17(2), 024010 (2008)
Kwon HS, Lee WG, “Atmospheric Pressure Plasma Apparatus,” Korean Patent No. 10-1337047(2013).
Baga AN, Johnson GRA, Nazhat NB, Nazhat RAS, Anal. Chim. Acta, 203, 349 (1988)
Lu J, Garland J, Pettit C, Babu S, Roy D, J. Electrochem. Soc., 151(10), G717 (2004)
Ko CK, Lee WG, Korean Chem. Eng. Res., 54(4), 548 (2016)
Yamabe C, Takeshita F, Miichi T, Hayashi N, Ihara S, Plasma Process. Polym., 2, 246 (2005)
Kim MS, Ryu KH, Lee KJ, J. Korean Powder Metall. Inst., 28(1), 25 (2021)
Nomura S, Toyota H, “Submerged Plasma Generator, Method of Generating Plasma in Liquid and Method of Decomposing Toxi Substance with Plasma in Liquid,” (2007)
Bruggeman P, Leys C, J. Phys. D-Appl. Phys., 42(5), 053001 (2009)
Chang J, Dickson S, Guo Y, Urashima K, Emelko M, Advanced Plasma Technology, Wiley-VCH, 421-433 (2008).
Locke BR, Shih K, Plasma Sources Sci. Technol., 20(3), 034006 (2011)
Schoenbach K, Kolb J, Xiao S, Katsuki S, Minamitani Y, Joshi R, Plasma Sources Sci. Technol., 17(2), 024010 (2008)
Kwon HS, Lee WG, “Atmospheric Pressure Plasma Apparatus,” Korean Patent No. 10-1337047(2013).
Baga AN, Johnson GRA, Nazhat NB, Nazhat RAS, Anal. Chim. Acta, 203, 349 (1988)
Lu J, Garland J, Pettit C, Babu S, Roy D, J. Electrochem. Soc., 151(10), G717 (2004)