Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 12, 2022
Accepted May 30, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
Laccase-탄소나노튜브 적층을 통한 효소 연료전지의 cathode 성능 향상
Enhancement of Electrochemical Performance of Cathode by Optimizing Laccase-Carbon Nanotubes Layers for Enzymatic Fuel Cells
1경상국립대학교 화학공학과 및 그린에너지 연구소, 52828 경상남도 진주시 진주대로 501 2안캉대학교 화학 및 화학공학과, 725000, 산시성 안캉시 육재로 92호 3경상국립대학교 나노신소재융합공학과, 52828 경상남도 진주시 진주대로 501
1Department of Chemical Engineering and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Korea 2School of Chemistry and Chemical Engineering, Ankang University, No. 92, Ycai Road, Ankang, Shaanxi, 725000, China
cj_kim@gnu.ac.kr
Korean Chemical Engineering Research, November 2022, 60(4), 550-556(7), 10.9713/kcer.2022.60.4.550 Epub 2 November 2022
Download PDF
Abstract
당, 알코올, 유기산 및 아미노산 등과 같은 다양한 유기물에 포함된 화학에너지를 전기에너지로 전환시키는 효소 연료전지의 성능은 anode 뿐만 아니라 cathode에도 큰 영향을 받는다. 본 연구의 목적은 laccase 기반의 고성능 cathode 전극을 개발하는데 있다. 효소, 전자전달체 및 탄소나노튜브로 구성된 효소 복합체를 제조하고 이를 전극 표면에 다층으로 부착하며 층수 및 탄소나노튜브의 첨가 유무가 전극 성능에 미치는 영향을 조사하였다. 전극 표면에 효소-전자전달체(Lac-(PVI-Os-dCl))의 층수가 증가할수록 전극에서 발생되는 환원 전류량이 증가하였다. 탄소나노튜브가 첨가된 효소-전자전달체 복합체 전극(Lac-SWCNTs-(PVI-Os-dCl))이 Lac-(PVI-Os-dCl) 전극에 비하여 1.7배 많은 환원 전류를 생성하였다. Lac-SWCNTs-(PVI-Os-dCl)과 Lac-(PVI-Os-dCl)의 비율을 변화시키며 적층한 전극들에서 2층의 Lac-(PVIOs- dCl)과 2층의 Lac-SWCNTs-(PVI-Os-dCl)으로 구성된 전극이 가장 많은 양의 환원 전류(10.1±0.1 μA)를 생성하였다. 단일 층의 Lac-(PVI-Os-dCl)로 구성된 cathode를 사용하는 셀과 최적화된 cathode를 사용하는 셀의 최대 생산 전력밀도는 각각 0.46±0.05와 1.23±0.04 μW/cm2였다. 본 연구 결과는 전극 표면에 laccase, 전자전달체 및 탄소나노튜브로 구성된 복합체의 적층 최적화를 통해 cathode 및 이를 이용하는 효소 연료전지의 성능을 향상시킬 수 있음을 시사한다.
The performance of enzymatic fuel cells that convert chemical energy contained in various organic molecules such as sugar, alcohol, organic acids, and amino acids into electrical energy is greatly affected by the cathode as well as the anode. This study aimed to develop a laccase-based cathode with high performance. An enzyme composite composed of an laccase, redox mediator, and carbon nanotubes was immobilized on the surface of electrode in multiple layers, and the effect of the number of layers and the presence or absence of carbon nanotubes on electrode performance was investigated. As the number of layers of the enzyme-mediator (Lac-(PVI-Os-dCl)) on the electrode surface increased, the amount of reduction current generated at the electrode increased. The enzyme-carbon nanotube-mediator composite electrode (Lac-SWCNTs-(PVI-Os-dCl)) generated a current 1.7 times greater than that of the Lac-(PVI-Os-dCl). It was found that the largest amount of current (10.1±0.1 μA) was generated in the electrode composed of two layers of Lac- (PVI-Os-dCl) and two layers of Lac-SWCNTs-(PVI-Os-dCl) in the evaluation of electrodes with different ratio of Lac-SWCNTs-(PVI-Os-dCl) and Lac-(PVI-Os-dCl). The maximum power density of the cell using the cathode composed of a single layer of Lac-(PVI-Os-dCl) and the cell using the optimized cathode were 0.46±0.05 and 1.23±0.04 μW/cm2, respectively. In this study, it was demonstrated that the performance of cathode and the enzymatic fuel cell using the same can be improved by optimizing the layers of composites composed of laccase, redox mediator, and carbon nanotubes on the electrode surface.
References
Martinez-Ortiz J, Flores R, Vazquez-Duhalt R, Biosens. Bioelectron., 26, 2626 (2011)
Xiao X, Xia H, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A, Chem. Rev., 119, 9509 (2019)
Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J, Chem. Soc. Rev., 46, 1545 (2017)
Kadam AA, Saratale GD, Ghodake GS, Saratale RG, Shahzad A, Magotra VK, Kumar M, Palem RR, Sung J, Chemosensors, 10, 58 (2022)
Yu S, Myung NV, Front. Chem, 8, 620153 (2021)
Hussein L, Rubenwolf S, Stetten FV, Urban G, Zengerie R, Kruger M, Kerzenmacher S, Biosens. Bioelectron., 26, 4133 (2011)
Gentil S, Pailley PR, Sancho F, Robert V, Mekmouche Y, Guallar V, Tron T, Goff AL, Chemistry, 26, 4798 (2020)
Gu Y, Yuan L, Jia L, Xue P, Yao H, RSC Adv., 11, 29498 (2021)
Scodeller P, Carballo R, Szamocki R, Levin L, Forchiassin F, Calvo EJ, J. Am. Chem. Soc., 132, 11132 (2010)
Szamocki R, Flexer V, Levin L, Forchiasin F, Calvo EJ, Electrochim. Acta, 132, 11132 (2010)
Wang X, Zhang YQ, Kim HK, Kim CJ, Electrochim. Acta, 392, 138974 (2021)
Wang X, Kim JH, Khang D, Kim HK, Kim CJ, Korean J. Chem. Eng., 36, 1172 (2019)
Mishra A, Bhatt R, Bajpai J, Bajpai AK, Int. J. Hydrog. Energy, 46, 19085 (2021)
Shin H, Kang C, Bull. Korean Chem. Soc., 31, 3118 (2010)
Zhao W, Xu JJ, Chen HY, Langmuir, 21, 9630 (2005)
Lalaoui N, David R, Jamet H, Holzinger M, Goff AL, Cosnier S, ACS Catal., 6, 4259 (2016)
Joshi PP, Merchant SA, Wang Y, Schmidtke DW, Anal. Chem., 77, 3183 (2005)
Ding SN, Holzinger M, Mousty C, Cosnier S, J. Power Sources, 195, 4714 (2010)
Wang Y, Joshi PP, Hobbs KL, Johnson MB, Schmidtke DW, Langmuir, 22, 9776 (2006)
Shin H, Kang C, Electrochim. Acta, 115, 599 (2014)
Osman MH, Shah AA, Walsh FC, Biosens. Bioelectron., 26, 3087 (2011)
Xiao X, Xia H, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A, Chem. Rev., 119, 9509 (2019)
Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J, Chem. Soc. Rev., 46, 1545 (2017)
Kadam AA, Saratale GD, Ghodake GS, Saratale RG, Shahzad A, Magotra VK, Kumar M, Palem RR, Sung J, Chemosensors, 10, 58 (2022)
Yu S, Myung NV, Front. Chem, 8, 620153 (2021)
Hussein L, Rubenwolf S, Stetten FV, Urban G, Zengerie R, Kruger M, Kerzenmacher S, Biosens. Bioelectron., 26, 4133 (2011)
Gentil S, Pailley PR, Sancho F, Robert V, Mekmouche Y, Guallar V, Tron T, Goff AL, Chemistry, 26, 4798 (2020)
Gu Y, Yuan L, Jia L, Xue P, Yao H, RSC Adv., 11, 29498 (2021)
Scodeller P, Carballo R, Szamocki R, Levin L, Forchiassin F, Calvo EJ, J. Am. Chem. Soc., 132, 11132 (2010)
Szamocki R, Flexer V, Levin L, Forchiasin F, Calvo EJ, Electrochim. Acta, 132, 11132 (2010)
Wang X, Zhang YQ, Kim HK, Kim CJ, Electrochim. Acta, 392, 138974 (2021)
Wang X, Kim JH, Khang D, Kim HK, Kim CJ, Korean J. Chem. Eng., 36, 1172 (2019)
Mishra A, Bhatt R, Bajpai J, Bajpai AK, Int. J. Hydrog. Energy, 46, 19085 (2021)
Shin H, Kang C, Bull. Korean Chem. Soc., 31, 3118 (2010)
Zhao W, Xu JJ, Chen HY, Langmuir, 21, 9630 (2005)
Lalaoui N, David R, Jamet H, Holzinger M, Goff AL, Cosnier S, ACS Catal., 6, 4259 (2016)
Joshi PP, Merchant SA, Wang Y, Schmidtke DW, Anal. Chem., 77, 3183 (2005)
Ding SN, Holzinger M, Mousty C, Cosnier S, J. Power Sources, 195, 4714 (2010)
Wang Y, Joshi PP, Hobbs KL, Johnson MB, Schmidtke DW, Langmuir, 22, 9776 (2006)
Shin H, Kang C, Electrochim. Acta, 115, 599 (2014)
Osman MH, Shah AA, Walsh FC, Biosens. Bioelectron., 26, 3087 (2011)