Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 24, 2022
Accepted July 5, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지
Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell
1한국교통대학교 교통·에너지융합전공, 27469 충청북도 충주시 대학로 50 2한국교통대학교 화공생물공학전공, 27469 충청북도 충주시 대학로 50
1Department of IT·Energy Convergence (BK21 FOUR), Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk, 27469, Korea 2Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk, 27469, Korea
Korean Chemical Engineering Research, November 2022, 60(4), 588-593(6), 10.9713/kcer.2022.60.4.588 Epub 2 November 2022
Download PDF
Abstract
본 논문에서는 hemin, 폴리에틸렌이민(PEI) 및 탄소나노튜브(CNT)를 이용하여 제조 CNT/PEI/hemin/PEI 복합재에 가교제인 테레프탈알데하이드(TPA)를 첨가하여 전자전달이 개선된 과산화수소 환원 반응(HPRR) 촉매를 합성하였다. 합성된 촉매(CNT/PEI/hemin/PEI/TPA)를 과산화수소 10 mM 농도에서 HPRR 반응성을 확인한 결과, 0.2 V (vs. Ag/ AgCl)에서 0.2813 mA cm?2의 전류 밀도로 나타났으며, 이는 가교하지 않은 촉매(CNT/PEI/hemin/PEI)와 범용 가교제 인 글루타르알데하이드(GA)에 의해 가교된 촉매(CNT/PEI/hemin/PEI/GA)에 비해 각각 2.43 및 1.87배 증가하였다. CNT/PEI/hemin/PEI/TPA의 HPRR 개시전위는 0.544 V로서 CNT/PEI/hemin/PEI와 CNT/PEI/hemin/PEI/GA의 0.511 및 0.471 V에 비하여 원활한 전자전달에 의해 개선되었음을 확인할 수 있었다. 이는 전기화학 임피던스 분광법(EIS) 을 이용한 분석 결과에서도 확인되었는데, CNT/PEI/hemin/PEI/GA의 경우, 전자전달을 방해하는 가교제의 도입에 따 라 CNT/PEI/hemin/PEI에 비하여 높은 전자전달저항을 나타낸 반면, CNT/PEI/hemin/PEI/TPA는 6.2% 감소하여, 가장 낮은 전자전달저항을 나타냈다. 막이 없는 흐름형 과산화수소 연료전지를 이용한 평가에서도, CNT/PEI/hemin/PEI/TPA 를 환원극으로 활용한 전지의 최대 출력 밀도가 36.34±1.41 μWcm?2로, CNT/PEI/hemin/PEI (27.87±0.95 μWcm?2)와 CNT/PEI/hemin/PEI/GA(25.57±1.32 μWcm?2) 보다 높게 측정되어, TPA는 전자전달을 개선 성능을 확인할 수 있었다.
Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm?2 (at 0.2 V vs. Ag/ AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/ PEI/TPA (36.34±1.41 μWcm?2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm?2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm?2), demonstrating again that the cathode using TPA has the best performance in HPRR.
Keywords
References
Fawzy S, Osman AI, Doran J, Rooney DW, Environ. Chem. Lett., 18(6), 2069 (2020)
Chen MT, Duan JJ, Feng JJ, Mei LP, Jiao Y, Zhang L, Wang AJ, J. Colloid Interface Sci., 605, 888 (2022)
Abe JO, Popoola API, Ajenifuja E, Popoola OM, Int. J. Hydrog. Energy, 44(29), 15072 (2019)
Fukuzumi S, Yamada Y, Karlin KD, Electrochim. Acta, 82, 493 (2012)
Miglbauer E, Wójcik PJ, Głowacki ED, Chem. Commun., 54(84), 11873 (2018)
Xue Y, Wang Y, Pan Z, Sayama K, Angew. Chem.-Int. Edit., 60(19), 10469 (2021)
Liu J, Zou Y, Jin B, Zhang K, Park JH, ACS Energy Lett., 4(12), 3018 (2019)
Wu J, Mehmood A, Zhang G, Wu S, Ali G, Kucernak A, ACS Catal., 11(9), 5035 (2021)
Ji J, Chung Y, Kwon Y, J. Mater. Chem. C, 8(8), 2749 (2020)
An H, Jeon H, Ji J, Kwon Y, Chung Y, J. Energy Chem., 58, 463 (2021)
Jeon S, An H, Ji J, Kwon Y, Chung Y, Int. J. Energy Res., 46(4), 4142 (2022)
Jeon S, An H, Chung Y, Sustain. Energy Fuels, 6(3), 841 (2022)
Reuillard B, Gentil S, Carrière M, Le Goff A, Cosnier S, Chem. Sci., 6(9), 5139 (2015)
Wang GX, Zhou Y, Wang M, Bao WJ, Wang K, Xia XH, ChemComm., 51(4), 689 (2015)
Chung Y, Hyun KH, Kwon Y, Nanoscale, 8(2), 1161 (2016)
Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
Chung Y, Christwardana M, Tannia DC, Kim KJ, Kwon Y, J. Power Sources, 360, 172 (2017)
Chen MT, Duan JJ, Feng JJ, Mei LP, Jiao Y, Zhang L, Wang AJ, J. Colloid Interface Sci., 605, 888 (2022)
Abe JO, Popoola API, Ajenifuja E, Popoola OM, Int. J. Hydrog. Energy, 44(29), 15072 (2019)
Fukuzumi S, Yamada Y, Karlin KD, Electrochim. Acta, 82, 493 (2012)
Miglbauer E, Wójcik PJ, Głowacki ED, Chem. Commun., 54(84), 11873 (2018)
Xue Y, Wang Y, Pan Z, Sayama K, Angew. Chem.-Int. Edit., 60(19), 10469 (2021)
Liu J, Zou Y, Jin B, Zhang K, Park JH, ACS Energy Lett., 4(12), 3018 (2019)
Wu J, Mehmood A, Zhang G, Wu S, Ali G, Kucernak A, ACS Catal., 11(9), 5035 (2021)
Ji J, Chung Y, Kwon Y, J. Mater. Chem. C, 8(8), 2749 (2020)
An H, Jeon H, Ji J, Kwon Y, Chung Y, J. Energy Chem., 58, 463 (2021)
Jeon S, An H, Ji J, Kwon Y, Chung Y, Int. J. Energy Res., 46(4), 4142 (2022)
Jeon S, An H, Chung Y, Sustain. Energy Fuels, 6(3), 841 (2022)
Reuillard B, Gentil S, Carrière M, Le Goff A, Cosnier S, Chem. Sci., 6(9), 5139 (2015)
Wang GX, Zhou Y, Wang M, Bao WJ, Wang K, Xia XH, ChemComm., 51(4), 689 (2015)
Chung Y, Hyun KH, Kwon Y, Nanoscale, 8(2), 1161 (2016)
Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
Chung Y, Christwardana M, Tannia DC, Kim KJ, Kwon Y, J. Power Sources, 360, 172 (2017)