Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 23, 2022
Accepted June 27, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사
Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model
전남대학교 화학공학부, 61186 광주광역시 북구 용봉로 77
School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
Korean Chemical Engineering Research, November 2022, 60(4), 613-619(7), 10.9713/kcer.2022.60.4.613 Epub 2 November 2022
Download PDF
Abstract
전도성 입자로 제조된 전기유변(Electrorheological) 유체에서 입자 크기 및 서로 다른 크기의 입자들의 혼합이 전기 유변 현상에 어떤 영향을 미치는지 살펴보기 위해 Onsager 이론으로 확장된 Maxwell-Wagner 분극 모델을 이용하여 전산 모사를 수행하였다. 전산 모사 결과 입자의 부피 분율이 같은 경우 단일한 크기의 입자로 구성된 균일한 전기유변 유체의 동적 항복응력은 입자 크기에 무관하였고, 크기가 서로 다른 입자들로 혼합된 비균일 전기유변 유체의 동적 항복응력은 균일한 전기유변 유체에 비해 감소하였다. 입자 부피 분율이 같은 경우 γ?*?0.01인 범위에서 큰 입자로 구 성된 균일한 전기유변 유체가 작은 입자로 구성된 균일한 전기유변 유체보다 전단응력이 큰 것으로 나타났으며, γ?*?1 인 경우에는 전기유변 유체는 큰 입자의 비율이 증가할수록 전단응력이 증가함을 보였다. 모든 입자 크기 및 조성에 대해 전도성 입자로 제조된 전기유변 유체의 특성인 비제곱 전기유변 현상(Δτ ∝ En, n ? 1.55)도 예측하였다.
The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for γ?*?0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (Δτ ∝ En, n ? 1.55) of the conducting particle ER suspensions.
Keywords
References
Winslow WM, J. Appl. Phys., 20, 1137 (1949)
Koyanagi K, Wang X, Karaki T, J. Intell. Mater. Syst. Struct., 33, 1101 (2022)
Dong Y, Kim H, Choi H, Chem. Pap., 75, 5009 (2021)
Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636 (1984)
Shulman ZP, Gorodkin RG, Korobko EV, J. Non-Newton. Fluid Mech., 8, 29 (1981)
Hao T, Adv. Colloid Interface Sci., 97, 1 (2002)
Liu YD, Choi HJ, Soft Matter, 8, 11961 (2012)
Block H, Kelly JP, J. Phys. D-Appl. Phys., 21, 1661 (1988)
Kim DH, Kim YD, J. Ind. Eng. Chem., 13(6), 879 (2007)
Filisko FE, Razdilowski LH, J. Rheol., 34, 539 (1990)
Otsubo Y, Sakine M, Katayama S, J. Colloid Interface Sci., 150, 324 (1992)
Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 168, 568 (1996)
Dong YZ, Kwon SH, Choi HJ, Puthiaraj P, Ahn W, ACS OMEGA, 3, 17246 (2018)
Noh J, Yoon CM, Jang J, J. Colloid Interface Sci., 470, 237 (2016)
Lengalova A, Pavlinek B, Saha P, Stejskal J, Quadrat O, J. Colloid Interface Sci., 258, 174 (2003)
Kim YD, Kim JH, Colloid Polym. Sci., 286, 631 (2008)
Kim YD, Kim JH, Synth. Met., 158, 479 (2008)
Stangroom JE, J. Stat. Phys., 64, 1059 (1991)
Kim YD, J. Colloid Interface Sci., 236, 225 (2001)
Klass DL, Martinek TW, J. Appl. Phys., 38, 67 (1967)
Klingenberg DJ, Swol F, Zukoski CF, J. Chem. Phys., 94, 6160 (1991)
Davis LC, Ginder JM, “Elevtrostatic Forces in Electrorheological Fluids,” New York, Plenum, 107-111(1995).
Foulc JN, Atten P, Felici N, J. Electrost., 33, 103 (1994)
Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. R-Rep., 17, 57 (1996)
Wu CW, Conrad H, J. Appl. Phys., 83, 3880 (1998)
Ota M, Miyamoto T, J. Appl. Phys., 76, 5528 (1994)
Mori Y, Tsunamoto T, Nakayama H, Int. J. Mod. Phys. B, 13, 1822 (1999)
Tan Z, Zou X, Zhang W, Jin Z, Phys. Rev. E, 59, 3177 (1999)
Kim YD, Korean Chem. Eng. Res., 58, 480 (2020)
Marshall L, Zukoski CF, J. Chem. Soc., 85, 2785 (1989)
Kim YD, Choi GJ, Sim SJ, Cho YS, Korean J. Chem. Eng., 16, 338 (1999)
Onsagar L, J. Chem. Phys., 2, 599 (1934)
Koyanagi K, Wang X, Karaki T, J. Intell. Mater. Syst. Struct., 33, 1101 (2022)
Dong Y, Kim H, Choi H, Chem. Pap., 75, 5009 (2021)
Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636 (1984)
Shulman ZP, Gorodkin RG, Korobko EV, J. Non-Newton. Fluid Mech., 8, 29 (1981)
Hao T, Adv. Colloid Interface Sci., 97, 1 (2002)
Liu YD, Choi HJ, Soft Matter, 8, 11961 (2012)
Block H, Kelly JP, J. Phys. D-Appl. Phys., 21, 1661 (1988)
Kim DH, Kim YD, J. Ind. Eng. Chem., 13(6), 879 (2007)
Filisko FE, Razdilowski LH, J. Rheol., 34, 539 (1990)
Otsubo Y, Sakine M, Katayama S, J. Colloid Interface Sci., 150, 324 (1992)
Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 168, 568 (1996)
Dong YZ, Kwon SH, Choi HJ, Puthiaraj P, Ahn W, ACS OMEGA, 3, 17246 (2018)
Noh J, Yoon CM, Jang J, J. Colloid Interface Sci., 470, 237 (2016)
Lengalova A, Pavlinek B, Saha P, Stejskal J, Quadrat O, J. Colloid Interface Sci., 258, 174 (2003)
Kim YD, Kim JH, Colloid Polym. Sci., 286, 631 (2008)
Kim YD, Kim JH, Synth. Met., 158, 479 (2008)
Stangroom JE, J. Stat. Phys., 64, 1059 (1991)
Kim YD, J. Colloid Interface Sci., 236, 225 (2001)
Klass DL, Martinek TW, J. Appl. Phys., 38, 67 (1967)
Klingenberg DJ, Swol F, Zukoski CF, J. Chem. Phys., 94, 6160 (1991)
Davis LC, Ginder JM, “Elevtrostatic Forces in Electrorheological Fluids,” New York, Plenum, 107-111(1995).
Foulc JN, Atten P, Felici N, J. Electrost., 33, 103 (1994)
Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. R-Rep., 17, 57 (1996)
Wu CW, Conrad H, J. Appl. Phys., 83, 3880 (1998)
Ota M, Miyamoto T, J. Appl. Phys., 76, 5528 (1994)
Mori Y, Tsunamoto T, Nakayama H, Int. J. Mod. Phys. B, 13, 1822 (1999)
Tan Z, Zou X, Zhang W, Jin Z, Phys. Rev. E, 59, 3177 (1999)
Kim YD, Korean Chem. Eng. Res., 58, 480 (2020)
Marshall L, Zukoski CF, J. Chem. Soc., 85, 2785 (1989)
Kim YD, Choi GJ, Sim SJ, Cho YS, Korean J. Chem. Eng., 16, 338 (1999)
Onsagar L, J. Chem. Phys., 2, 599 (1934)