ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 4, 2022
Accepted July 22, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가

Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm

동국대학교 WISE 캠퍼스 창의융합공학부, 38066 경북 경주시
Division of Creative Convergernce Engineering, Dongguk University, WISE Campus, 123, Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do, 38066, Korea
Korean Chemical Engineering Research, February 2023, 61(1), 142-154(13), 10.9713/kcer.2023.61.1.142 Epub 10 February 2023
downloadDownload PDF

Abstract

전세계적으로 환경의 중요성이 부각되면서, 원재료 준비, 생산 공정, 운송 및 설치 등 산업 전체 기간에 걸친 기후 변화 주요 물질인 탄소 배출량을 계산하고, 저감해야 한다는 필요성이 강조되고 있다. 이를 전과정평가(Life Cycle Assessment, LCA)라 정의되면서 전세계적으로 다양한 산업들에 시도되고 있다. 국내에도 일부 관련 시도들이 있었지 만, 국내 재생에너지 산업에 대해서는 거의 발표되지 않았다. 이러한 연구 중요성에도 불구하고, 부진한 관련 연구의 격차를 메꾸기 위해 본 연구는 국내 육상 풍력발전 단지의 한 사례인 경북 영덕 발전에 대하여 LCA 연구를 관련 시 스템 중 가장 많이 사용되는 SimaPro를 이용하여 수행하였다. 연구 결과 풍력 터빈 1대의 에너지 회수기간(EPT)는 약 10개월이며, 1 kwh의 전력을 생산하는데 배출되는 온실가스 배출량(Green House Gas, GHG,)는 15 g CO2/kWh로 다 른 에너지원과 비교해서 경쟁력 있음을 보였다. 부품 별 환경 영향 평가에서는 풍력 터빈의 타워가 여러 환경 영향 부 문에 영향이 가장 크다는 결과를 보였다. 본 연구에서 얻어진 경험은 향후 신재생 에너지 보급 및 확대 정책의 강화와 대중의 인식 제고에 도움이 될 것이라고 사료된다.
As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.

References

https://www.ipcc.ch/.
Agreement P, “Paris Agreement,” Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change, 4, 2017(2015).
http://energyatlas.iea.org/#!/tellmap/1378539487.
Council GWE, “GWEC Global Wind Report 2021,” Glob. Wind Energy Counc(2021).
Pacala S, Socolow R, Science, 305, 968 (2004)
Nazir MS, Mahdi AJ, Bilal M, Sohail HM, Ali N, Iqbal HMN, Sci. Total Environ., 683, 436 (2019)
Saidur R, Rahim NA, Islam MR, Solangi KH, Renew. Sust. Energ. Rev., 15, 2423 (2011)
Dhar A, Naeth MA, Jennings PD, El-Din MG, Sci. Total Environ., 718, 134602 (2020)
Sebestyén V, Renew. Sust. Energ. Rev., 151, 111626 (2021)
Kumar Y, Ringenberg J, Depuru SS, Devabhaktuni VK, Lee JW, Nikolaidis E, Andersen B, Afjeh A, Renew. Sust. Energ. Rev., 53, 209 (2016)
Guangul FM, Chala GT, “SWOT Analysis of Wind Energy as a Promising Conventional Fuels Substitute,” 1-6, (2019).
Silva DAL, Nunes AO, Moris VAS, Piekarski CM, Rodrigues TO, VII Conferencia Internacional de anáLisis de Ciclo de Vida En Latinoamérica(2017).
Chang RD, Zuo J, Zhao ZY, Zillante G, Gan XL, Soebarto V, Renew. Sust. Energ. Rev., 72, 48 (2017)
Waas T, Hugé J, Block T, Wright T, Benitez-Capistros F, Verbruggen A, Sustainability, 6, 5512 (2014)
ISO, ISO 14044. “Environmental Management – Life Cycle Assessment – Requirements and Guidelines,” British Standards Institution( 2006).
ISO, ISO 14040. “Environmental Management – Life Cycle Assessment – Principles and Framework,” British Standards Institution( 2006).
Bhat IK, Prakash R, Renew. Sust. Energ. Rev., 13, 1067 (2009)
Hwang H, Mun J, Kim J, Korean Chem. Eng. Res., 58(3), 381 (2020)
Kim K, Kim J, Korean Chem. Eng. Res., 54(4), 470 (2016)
Strantzali E, Aravossis K, Renew. Sust. Energ. Rev., 55, 885 (2016)
Martinez E, Sanz F, Pellegrini S, Jimenez E, Blaco J, Int. J. Life Cycle Assess, 14, 52 (2009)
Varun, Bhat IK, Prakash R, Renew. Sust. Energ. Rev., 13, 1067 (2009)
Oebels KB, Pacca S, Renew. Energy, 53, 60 (2013)
Awan AB, Khan ZA, Renew. Sust. Energ. Rev., 33, 236 (2014)
Raadal HL, Vold BI, Myhr A, Jonkman JM, Robertson AN, Nygaard TA, Renew. Energy, 66, 314 (2014)
Bonou A, Laurent A, Olsen SI, Appl. Energy, 180, 327 (2016)
Martínez E, Latorre-Biel JI, Jiménez E, Sanz F, Blanco J, Renew. Sust. Energ. Rev., 93, 260 (2018)
Gkantou M, Rebelo C, Baniotopoulos C, Energies, 13, 3950 (2020)
Pollini B, Rognoli V, Sustain. Prod. Consum., 28, 1130 (2021)
Tremeac B, Meunier F, Renew. Sust. Energ. Rev., 13, 2104 (2009)
MartÍnez E, Sanz F, Pellegrini S, Jiménez E, Blanco J, Renew. Energy, 34, 667 (2009)
Vargas AV, Zenón E, Oswald U, Islas JM, Güereca LP, Manzini FL, Appl. Therm. Eng., 75, 1210 (2015)
Uddin MS, Kumar S, J. Clean Prod., 69, 153 (2014)
Huang YF, Gan XJ, Chiueh PT, Renew. Energy, 102, 98 (2017)
Alsaleh A, Sattler M, Clean Technol. Environ. Policy, 21, 887 (2019)
Stavridou N, Koltsakis E, Baniotopoulos CC, Clean Energy, 4, 48 (2019)
Nagle AJ, Delaney EL, Bank LC, Leahy PG, J. Clean Prod., 277, 123321 (2020)
Upadhyayula VKK, Gadhamshetty V, Athanassiadis Tysklind DM, Meng F, Pan Q, Cullen JM, Yacout DMM, Environ. Sci. Technol., 56, 1267 (2022)
Chipindula J, Botlaguduru VSV, Du H, Kommalapati RR, Huque Z, Sustainability, 10, 2022 (2018)
https://www.epa.gov/.
Choi BH, Park SU, Lee DK, New Renew. Energy, 3, 11 (2007)
Reinert C, Deutz S, Minten H, Dörpinghaus L, von Pfingsten S, Baumgärtner N, Bardow A, Comput. Chem. Eng., 153, 107406 (2021)
De Camillis C, Brandão M, Zamagni A, Pennington DW, Towards Recommendations for Policy Making and Business Strategies (2013).
Ekvall T, Azapagic A, Finnveden G, Rydberg T, Weidema BP, Zamagni A, Int. J. Life Cycle Assess., 21, 293 (2016)
Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, Zelm RV, Int. J. Life Cycle Assess., 22, 138 (2017)
Amponsah NY, Troldborg M, Kington B, Aalders I, Hough RL, Renew. Sust. Energ. Rev., 39, 461 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로