Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 25, 2022
Accepted October 31, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Cited
후코이단과 탄닌산에 의한 PEMFC 고분자막의 내구성 향상
Enhancement of Membrane Durability in PEMFC by Fucoidan and Tannic Acid
순천대학교 화학공학과, 57922 전라남도 순천시 중앙로 255 1㈜ETIS, 10122 경기도 김포시 고촌읍 풍곡리 431-1 2㈜CNL Energy, 57922 전라남도 순천시 중앙로 255
Department of Chemical Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Korea 1ETIS Co., Punggok-ri, Gochon-eup, Gimpo-si, Gyeonggi-DO, 10122, Korea 2CNL Energy Co., 255, Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Korea
parkkp@scnu.ac.kr
Korean Chemical Engineering Research, February 2023, 61(1), 45-51(7), 10.9713/kcer.2023.61.1.45 Epub 26 January 2023
Download PDF
Abstract
PEMFC(고분자전해질 연료전지) 고분자막의 내구성을 향상시키기 위해서 라디칼 제거제와 지지체가 사용되고 있다. 본 연구에서는 화학적 내구성과 물리적 내구성을 향상시키기 위해서 해조류에서 추출한 후코이단과 가교제 역할을 하 는 탄닌산을 첨가한 고분자막의 내구성을 평가하였다. 물리적 내구성은 인장강도를 측정해 확인했고, 화학적 내구성은 Fenton 실험으로 측정하였다. 막과 전극합체(MEA)를 제조하여 셀에서 가속 내구 평가를 통해 기계적 내구성과 화학 적 내구성을 평가하였다. 인장강도 측정으로 후코이단과 탄닌산의 변형율과 항복강도 등을 향상시켜 고분자막의 기계 적 내구성을 향상시킬 수 있음을 보였다. 후코이단이 라디칼 제거제 역할을 함을 Fenton 실험에서 확인했다. 단위전지 에서 가속 내구 실험 결과 후코이단은 화학적 내구와 기계적 내구를 모두 향상시켜 무첨가막보다 가속 내구 평가 시 간을 38.1% 증가시켰고, 탄닌산을 추가하면 기계적 내구성 향상에 의해 고분자막의 내구성이 13.9% 향상되었다.
In order to improve the durability of the PEMFC(Proton Exchange Membrane Fuel Cells) polymer membrane, a radical scavenger and a support are used. In this study, the durability of membranes containing fucoidan extracted from seaweeds and tannic acid serving as a crosslinking agent is evaluated to improve chemical and physical durability. Physical durability is evaluated by measuring tensile strength, and chemical durability is measured by Fenton experiment. Membrane and electrode assembly (MEA) is prepared and mechanical and chemical durability are measured through accelerated durability evaluation in the cell. The tensile strength measurement showed that fucoidan and tannic acid can improve the mechanical durability of the membrane by improving the strain rate and yield strength. It is shown in Fenton experiment that fucoidan acts as a radical scavenger. As a result of the accelerated durability test in the unit cell, fucoidan improved both chemical and mechanical durability, increasing the accelerated durability evaluation time by 38.1% compared to the additive-free membrane. When tannic acid is added, the durability of the polymer membrane is improved by 13.9% by improving the mechanical durability.
References
Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, Chem. Rev., 107(10), 3904 (2007)
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1, (2016).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140(12), 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
Pozio A, Silva RF, Francesco MD, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood III DL, Wayne DN, Zawodinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28, 487 (2011)
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, 611-612, (2003).
Collier A, Wang H, Yaun X, Zhang J, Wilison DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1, (2016).
Wang H, Tang M, Pan DL, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Takaka A, J. Power Sources, 158(2), 1222 (2006)
Kim TH, Lee JH, Cho GJ, Park KP, Korean Chem. Eng. Res., 44(6), 597 (2006)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98(9), 1766 (2013)
Hao J, Jiang Y, Gao X, Xie F, Shao Z, Yi B, J. Membr. Sci., 522(15), 23 (2017)
Zhu H, Pei S, Tang J, Li H, Wang L, Yuan W, Zhang Y, J. Membr. Sci., 432(1), 66 (2013)
Cha SH, Ahn MW, Lee JS, Kim YS, Kim DU, Byun TG, Park KP, Korean Chem. Eng. Res., 50(4), 604 (2012)
Tatiana NZ, Nataliiya MS, Irina BP, Vladimir VI, Andrey SS, Elena VS, Lyudmila AE, Carbohydr. Res., 322(1-2), 32 (1999)
Fortun A, Khalil A, Gagne D, Douziech N, Kuntz C, Dupuis G, Atherosclerosis, 156(1), 11 (2001)
Collis S, Fisher AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J, Thromb. Res., 64(2), 143 (1991)
Mauray S, Raucourt E, Talbot J, Jozefowicz M, Fis cher A, Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184 (1998)
Saito A, Yoneda M, Yokohama S, Okada M, Haneda M, Nakamura K, Hepatology Research, 35(3), 190 (2006)
Carla Vilelaa, Silva ACQ, Domingues EM, Gonçalves G, Martins MA, Figueiredo FML, Santos SAO, Carbohydr. Polym., 230(15), 115604 (2020)
Carla V, João DM, Ana CQ, Silva DM, Filipe ML, Figueiredo AJD, Carmen SRF, Nanomaterials, 10(9), 1713 (2020)
Yao Y, Liu J, Liu W, Zhao M, Wu B, Gu J, Zou Z, Energy Environ. Sci., 7, 3362 (2014)
Oh SH, Kak AH, Oh SJ, Lee DW, Na IC, Park KP, Korean Chem. Eng. Res., 58(1), 59 (2020)
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1, (2016).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140(12), 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
Pozio A, Silva RF, Francesco MD, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood III DL, Wayne DN, Zawodinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28, 487 (2011)
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, 611-612, (2003).
Collier A, Wang H, Yaun X, Zhang J, Wilison DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1, (2016).
Wang H, Tang M, Pan DL, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Takaka A, J. Power Sources, 158(2), 1222 (2006)
Kim TH, Lee JH, Cho GJ, Park KP, Korean Chem. Eng. Res., 44(6), 597 (2006)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98(9), 1766 (2013)
Hao J, Jiang Y, Gao X, Xie F, Shao Z, Yi B, J. Membr. Sci., 522(15), 23 (2017)
Zhu H, Pei S, Tang J, Li H, Wang L, Yuan W, Zhang Y, J. Membr. Sci., 432(1), 66 (2013)
Cha SH, Ahn MW, Lee JS, Kim YS, Kim DU, Byun TG, Park KP, Korean Chem. Eng. Res., 50(4), 604 (2012)
Tatiana NZ, Nataliiya MS, Irina BP, Vladimir VI, Andrey SS, Elena VS, Lyudmila AE, Carbohydr. Res., 322(1-2), 32 (1999)
Fortun A, Khalil A, Gagne D, Douziech N, Kuntz C, Dupuis G, Atherosclerosis, 156(1), 11 (2001)
Collis S, Fisher AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J, Thromb. Res., 64(2), 143 (1991)
Mauray S, Raucourt E, Talbot J, Jozefowicz M, Fis cher A, Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184 (1998)
Saito A, Yoneda M, Yokohama S, Okada M, Haneda M, Nakamura K, Hepatology Research, 35(3), 190 (2006)
Carla Vilelaa, Silva ACQ, Domingues EM, Gonçalves G, Martins MA, Figueiredo FML, Santos SAO, Carbohydr. Polym., 230(15), 115604 (2020)
Carla V, João DM, Ana CQ, Silva DM, Filipe ML, Figueiredo AJD, Carmen SRF, Nanomaterials, 10(9), 1713 (2020)
Yao Y, Liu J, Liu W, Zhao M, Wu B, Gu J, Zou Z, Energy Environ. Sci., 7, 3362 (2014)
Oh SH, Kak AH, Oh SJ, Lee DW, Na IC, Park KP, Korean Chem. Eng. Res., 58(1), 59 (2020)