ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 21, 2022
Accepted August 24, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies

1전북대학교 환경에너지융합학과, 54896 전라북도 전주시 덕진구 백제대로 567 2전북대학교 자원에너지공학과, 54896 전라북도 전주시 덕진구 백제대로 567
1Department of Environment and Energy, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea 2Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea
donald@jbnu.ac.kr
Korean Chemical Engineering Research, February 2023, 61(1), 8-18(11), 10.9713/kcer.2023.61.1.8 Epub 26 January 2023
downloadDownload PDF

Abstract

지속적인 인구의 증가와 경제의 발전으로 인한 전세계 에너지 수요의 증가는 화석연료의 이용을 끊임없이 증가시키 고 있다. 그러나 화석연료에 대한 높은 의존도는 환경오염과 급격한 지구온난화라는 새로운 문제를 야기시켰다. 이의 해결을 위해 전통적인 연소에서 벗어나 열분해, 가스화와 같은 새로운 열화학적 전환 공정을 이용한 청정 에너지 생산 이 빠르게 확산되고 있다. 특히 다양한 연료의 이용, 쉬운 연속조업, 높은 열 및 물질전달, 등온 조업, 낮은 조업 온도 등의 특성들을 가지는 유동층 공정은 열화학적 에너지 전환에 적합하기 때문에 널리 채택되어 이용되고 있다. 이에 본 총설에서는 열분해, 가스화, 연소에 적용된 최근의 유동층 공정 연구의 중요한 결과들을 정리하였다. 더불어 유동층 열 화학적 공정에서 주로 연구되지 않은 층물질, 미세먼지 저감을 위한 물질(바이오매스, 천연 자원 폐기물 등)과 같은 연 구의 필요성을 제시하였다. 이를 통해 유동층 기술에 대한 관심과 이해를 높이고, 유동층 공정 기술 개발의 미래 과제를 해결하기 위한 방향을 제시하고자 한다.
Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

References

Lee R, Gwak YR, Sohn JM, Lee SH, “The Prediction of CO2 Emissions in Domestic Power Generation Sector Between 2020 and 2030 for Korea,” 32(5), 855-873, (2021).
Seo MW, Lee SH, Nam H, Lee D, Tokmurzin D, Wang S, Park YK, Bioresour. Technol., 343, 126109 (2022)
Tumsa TZ, Lee SH, Normann F, Andersson K, Ajdari S, Yang W, Chem. Eng. Res. Des., 131, 626 (2018)
Lee SH, Kim DW, Lee JM, Bae YC, Korean Chem. Eng. Res., 57(6), 853 (2019)
Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, “The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers,” 57(5), 687-694, (2019).
Fuchs J, Schmid JC, Müller S, Hofbauer H, Renew. Sust. Energ. Rev., 107, 212 (2019)
Gholizadeh M, Hu X, Liu Q, Renew. Sust. Energ. Rev., 114, 109313 (2019)
Seo SB, Go ES, Ling JLJ, Lee SH, Renew. Energy, 193, 23 (2022)
Seo SB, Ahn H, Go ES, Ling LJJ, Siambun NJ, Park YK, Lee SH, Biomass Convers. Biorefin., 1 (2022)
Ling J, Kim H, Go E, Oh S, Park H, Jeong C, Lee S, Energy Conv. Manag., 259, 115569 (2022)
Kim HW, Seo SB, Kang SY, Go ES, Oh SS, Lee Y, Yang W, Lee SH, Energy Fuels, 227, 120487 (2021)
Mallick D, Mahanta P, Moholkar VS, Energy Fuels, 192, 116682 (2020)
Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121 (2019)
Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy Fuels, 35(7), 2814 (2010)
Barea GA, Leckner B, Prog. Energy Combust. Sci., 36(4), 444 (2010)
Seo MW, Kim SD, Na JG, Lee SH, Korean Chem. Eng. Res., 47(6), 734 (2009)
Demirbas A, Prog. Energy Combust. Sci., 30(2), 219 (2004)
Lee SH, Kim JM, Kim JS, Choe JH, Kim SD, Korean Chem. Eng. Res., 38(4), 516 (2000)
Lee JR, Kim YH, Won YS, Korean J. Chem. Eng., 38(9), 1791 (2021)
Asl SM, Azhgan S, Movahedirad S, Korean J. Chem. Eng., 35(2), 613 (2018)
Usmani Z, Sharma M, Awasthi AK, Sivakumar N, Lukk T, Pecoraro L, Thakur VK, Roberts D, Newbold J, Gupta VK, Bioresour. Technol., 322, 124548 (2021)
Collard FX, Blin J, Renew. Sust. Energ. Rev., 38, 594 (2014)
Kan T, Strezov V, Evans TJ, “Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters, 57, 1126-1140, (2016).
Balat M, Balat M, Kırtay E, Balat H, Energy Conv. Manag., 50(12), 3147 (2009)
Canabarro N, Soares JF, Anchieta CG, Kelling CS, Mazutti MA, “Thermochemical Processes for Biofuels Production from Biomass,” 1(1), 1-10, (2013).
Gautam P, Upadhyay SN, Dubey S, “Bio-methanol as a Renewable Fuel from Waste Biomass: Current Trends and Future Perspective,” 273, 117783, (2020).
Mohan D, Pittman Jr CU, Steele PH, “Pyrolysis of Wood/ biomass for Bio-oil: a Critical Review,” 20(3), 848-889, (2006).
Yao C, Tian H, Hu Z, Yin Y, Chen D, Yan X, Korean J. Chem. Eng., 35(2), 511 (2018)
Kaushal P, Abedi J, J. Ind. Eng. Chem., 16(5), 748 (2010)
Shun D, Shin JS, Bae DH, Ryu HJ, Park J, Korean J. Chem. Eng., 34(12), 3125 (2017)
Qureshi KM, Lup ANK, Khan S, Abnisa F, Daud WMAW, Korean J. Chem. Eng., 38(9), 1797 (2021)
Lee HW, Jeong H, Ju YM, Lee SM, Korean J. Chem. Eng., 37(7), 1174 (2020)
Kaminsky W, Fuel Commun., 8, 100023 (2021)
Suntivarakorn R, Treedet W, Singbua P, Teeramaetawat N, Energy Reports, 4, 565 (2018)
Park JY, Kim JK, Oh CH, Park JW, Kwon EE, J. Environ. Manage., 234, 138 (2019)
Makkawi Y, El Sayed Y, Salih M, Nancarrow P, Banks S, Bridgwater T, Renew. Energy, 143, 719 (2019)
Santamaria L, Beirow M, Mangold F, Lopez G, Olazar M, Schmid M, Li Z, Scheffknecht G, Fuel, 283, 118922 (2021)
Song X, Wu Y, He X, Bagley DM, Adidharma H, Wang W, Fan M, Sep. Purif. Technol., 254, 117573 (2021)
Yogalakshmi K, Sivashanmugam P, Kavitha S, Kannah Y, Varjani S, AdishKumar S, Kumar G, “Lignocellulosic Biomass- based Pyrolysis: A Comprehensive Review." 286, 131824, (2022).
Efika CE, Onwudili JA, Williams PT, “Influence of Heating Rates on the Products of High-temperature Pyrolysis of Waste Wood Pellets and Biomass Model Compounds,” 76, 497-506, (2018).
Saraeian A, Nolte MW, Shanks BH, Carbon, 104, 262 (2019)
Sharifzadeh M, Sadeqzadeh M, Guo M, Borhani TN, Konda NM, Garcia MC, Wang L, Hallett J, Shah N, Directions, 71, 1 (2019)
Küçük M, Demirbaş A, Biomass Conversion Processes, 38(2), 151 (1997)
Zhang Z, Pang S, Renew. Energy, 132, 416 (2019)
Akay G, Jordan CA, “Gasification of Fuel Cane Bagasse in a Downdraft Gasifier: Influence of Lignocellulosic Composition and Fuel Particle Size on Syngas Composition and Yield,” 25(5), 2274-2283, (2011).
Anukam A, Mamphweli S, Reddy P, Meyer E, Okoh O, Renew. Sust. Energ. Rev., 66, 775 (2016)
Motta IL, Miranda NT, Maciel Filho R, Maciel MRW, Renew. Sust. Energ. Rev., 94, 998 (2018)
Pinto F, André RN, Carolino C, Miranda M, Fuel Process. Technol., 126, 19 (2014)
Heidenreich S, Foscolo PU, Prog. Energy Combust. Sci., 46, 72 (2015)
Molino A, Chianese S, Musmarra D, J. Energy Chem., 25(1), 10 (2016)
Bae K, Lim JH, Kim JH, Lee DH, Han JH, Park SH, Lee DH, Korean J. Chem. Eng., 34(2), 566 (2017)
Han SW, Seo MW, Park SJ, Son SH, Yoon SJ, Ra HW, Mun TY, Moon JH, Yoon SM, Kim JH, Korean Chem. Eng. Res., 57(6), 874 (2019)
Hai IU, Sher F, Yaqoob A, Liu H, Fuel, 258, 116143 (2019)
Benedikt F, Fuchs J, Schmid JC, Müller S, Hofbauer H, Korean J. Chem. Eng., 34(9), 2548 (2017)
Karatas H, Akgun F, Fuel, 214, 285 (2018)
Stec M, Czaplicki A, Tomaszewicz G, Słowik K, Korean J. Chem. Eng., 35(1), 129 (2018)
Makwana JP, Pandey J, Mishra G, Renew. Energy, 130, 943 (2019)
Liu L, Huang Y, Cao J, Liu C, Dong L, Xu L, Zha J, Sci. Total Environ., 626, 423 (2018)
Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A, Renew. Sust. Energ. Rev., 53, 1333 (2016)
Samiran NA, Jaafar MNM, Ng JH, Lam SS, Chong CT, Renew. Sust. Energ. Rev., 62, 1047 (2016)
Puig Arnavat M, Bruno JC, Coronas A, Energy Fuels, 26(2), 1385 (2012)
Atimtay AT, Kayahan U, Unlu A, Engin B, Varol M, Olgun H, Atakul H, “Co-firing of Pine Chips with Turkish Lignites in 750 kWth Circulating Fluidized Bed Combustion System,” 224, 601-610, (2017).
Göransson K, Söderlind U, He J, Zhang W, Renew. Sust. Energ. Rev., 15(1), 482 (2011)
Park SS, Chae HJ, Kim TW, Jeong KE, Kim CU, Jeong SY, Lim JH, Park YK, Lee DH, Korean Chem. Eng. Res., 56(6), 878 (2018)
Lian Z, Wang Y, Zhang X, Yusuf A, Famiyeh L, Murindababisha D, Jin H, Liu Y, He J, Wang Y, “Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach,” J., 4(3), 266-287, (2021).
Soanuch C, Korkerd K, Phupanit J, Piemjaiswang R, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 38(3), 540 (2021)
Park HS, Baek IH, Hyun JS, Sim JM, Jo YH, Yu JH, Choi HG, Kim SD, Lim JH, Yeo JG, Nam SC, Park SR, Korea Institute of Energy Research, 2018.
Moon JH, Jo SH, Mun TY, Park SJ, Kim JY, Nguyen HK, Lee JG, Korean Chem. Eng. Res., 57(3), 400 (2019)
Gwak YR, Kim YB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(5), 631 (2018)
Gwak YR, Yun JH, Keel SI, Lee SH, Korean J. Chem. Eng., 37(11), 1878 (2020)
Jang HN, Sung JH, Choi HS, Seo YC, Korean Chem. Eng. Res., 55(6), 846 (2017)
Cammarota A, Cammarota F, Chirone R, Ruoppolo G, Solimene R, Urciuolo M, Sci. Technol., 2019.
Nguyen HK, Moon JH, Jo SH, Park SJ, Seo MW, Ra HW, Yoon SJ, Yoon SM, Song BH, Lee U, Energy Fuels, 196, 117020 (2020)
Sher F, Pans MA, Sun C, Snape C, Liu H, Fuel, 215, 778 (2018)
Wang X, Ren Q, Li W, Li H, Li S, Lu Q, Energy Fuels, 31(3), 3234 (2017)
Chi H, Pans MA, Sun C, Liu H, Fuel, 240, 349 (2019)
Go ES, Kook JW, Seo KW, Seo SB, Kim HW, Kang SY, Lee SH, Korean Chem. Eng. Res., 59(3), 417 (2021)
Yoon SH, Beak GU, Moon JH, Jo SH, Park SJ, Kim JY, Seo MW, Yoon SJ, Yoon SM, Lee JG, Korean Chem. Eng. Res., 59(1), 127 (2021)
Luis F, de las Obras Loscertales M, García Labiano F, Rufas A, Abad A, Gayán P, Adánez J, Int. J. Greenhouse Gas Control., 5(5), 1190 (2011)
Kang S, Go E, Seo S, Kim H, Keel S, Lee S, Sci. Total Environ., 758, 143704 (2021)
Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Chem. Eng. J., 377, 119650 (2019)
Kang SY, Seo SB, Go ES, Kim HW, Keel SI, Park YK, Lee SH, Fuel, 291, 120270 (2021)
Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(6), 856 (2018)
Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 57(5), 687 (2019)
Li B, Li Y, Zhang W, Qian Y, Wang Z, Korean J. Chem. Eng., 37(4), 688 (2020)
Park JH, Lee DH, Bae DH, Choi YJ, Ryu HW, Kim JB, Han KH, Shun D, Korean Chem. Eng. Res., 57(4), 492 (2019)
Nam H, Wang S, Sanjeev K, Seo MW, Adhikari S, Shakya R, Lee D, Shanmugam SR, Biomass Bed Material Catalyst, 225, 113408 (2020)
Kim HW, Lee D, Nam H, Hong YW, Seo SB, Go ES, Kang SY, Lee SH, Clean Technol., 26(1), 65 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로