ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 6, 2023
Revised February 27, 2023
Accepted February 28, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향

Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis

1㈜ETIS 10122 경기도 김포시 고천읍 풍곡리 431-1 2㈜CNL Energy 57922 전남 순천시 매곡동 315
1ETIS Co, Punggok-ri, Gochon-eup, Gimpo-si, Gyeonggi-Do, 10122, Korea 2CNL Energy, 315 Maegok-dong, Suncheon, Jeonnam, 57922, Korea
pudlepark@hanmail.net
Korean Chemical Engineering Research, May 2023, 61(2), 202-207(6), 10.9713/kcer.2023.61.2.202 Epub 31 May 2023
downloadDownload PDF

Abstract

태양광과 풍력발전의 잉여전기를 공급받아 수전해를 구동하는 경우 날씨 변동에 따라 구동과 정지를 반복해야한다. 수전해를 구동하다 정지하면 잔류 수소와 산소에 의해 PEM 연료전지와 같은 상태가 되고, 구동 중 형성된 수전해의 높은 전위 때문에 전극과 고분자막이 정지 중에도 열화될 가능성이 높다. 본 연구에서는 PEM 수전해가 구동/정지 반 복과정에서 전극과 고분자막의 열화가 얼마나 진행되는지 확인하고자, 144시간 동안에 구동/정지 횟수를 변화시키며 성능 감소를 측정하였다. 전극 촉매 활성면적 변화와 고분자막의 수소투과도와 불소유출속도 등을 분석해 전극과 고 분자막의 특성 변화를 측정했다. 전체적으로 정지 횟수가 증가할수록 PEM 수전해 성능이 감소했다. 144시간동안에 5 회 정지했을 때 IrOx 촉매 활성이 30% 이상 감소하였고, 수소투과도는 80% 증가해서 전극과 고분자막이 모두 열화됨 을 확인했다.

In the case of driving water electrolysis by receiving surplus electricity from solar and wind power generation, operation and stopping must be repeated according to weather fluctuations. When the PEMWE(Polymer Electrolyte Membrane Water Electrolysis) is driven and stopped, the PEM fuel cell is in the same state as the PEM fuel cell due to the residual hydrogen and oxygen, and the high potential of the water electrolysis formed during operation is highly likely to cause degradation of the electrode and membrane even during stopping. In this study, in order to check how much degradation of the electrode and membrane progresses during the repeated driving/shutdown process of PEM water electrolysis, the performance decrease was measured by changing the number of driving/shutdown for 144 hours. Changes in electrode catalyst active area, hydrogen permeability and fluorine emision rate of membranes were analyzed to measure changes in the properties of electrodes and polymer membranes. Overall, the PEMWE performance decreased as the number of stops increased. When stopped 5 times in 144 hours, the IrOx catalyst activity decreased by more than 30%, and the hydrogen permeability increased by 80%, confirming that both the electrode and the membrane were deteriorated.

References

1. Alexander, B. and Hartmut, S., “Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling Via Power-to-gas and Power-to-liquids: A Review,” Renew. Sustain. Energy Rev., 82, 2440-2454(2018).
2. Ju, H. K., Badwal, S. and Giddey, S., “Comprehensive Review of Carbon and Hydrocarbon Assisted Water Electrolysis for Hydrogen Production,” Appl. Energy, 231(1), 502-533(2018).
3. Kumar, S. S. and Himabindu, V., “Hydrogen Production by PEM Water Electrolysis–A Review,” Mater. Sci. for Energy Technol.,2(3), 442-454(2019).
4. Grigoriev, S. A., Millet, P. and Fateev, V. N., “Evaluation of Carbon-supported Pt and Pd Nanoparticles for the Hydrogen Evolution Reaction in PEM Water Electrolysers,” J. Power Sources,177(2), 281-285(2008).
5. Millet, P., Ngameni, R., Grigoriev, S. A., Mbemba, N., Brisset,F., Ranjbari, A. and Etiévant, C., “PEM Water Electrolyzers:From Electrocatalysis to Stack Development,” Int. J. Hydrogen Energy, 35(10), 5043-5052(2010).
6. Carmo, M., Fritz, D. L., Mergel, J. and Stolten, D., “A Comprehensive Review on PEM Water Electrolysis,” Int. J. Hydrogen Energy., 38(12), 4901-4934(2013).
7. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., “Degradation of Nafion Membrane by Oxygen Radical,” Korean Chem. Eng.Res., 44(6), 597-601(2006).
8. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T.W. and Park, K. P., “Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test,”Korean J. Chem. Eng., 28(2), 487-491(2011).
9. Oh, H. S., Nong, H. N., Reier, T., Bergmann, A., Gliech, M.,Teschner, D. and Strasser, P., “Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction,” J. Am. Chem. Soc.,138(38), 12552-12563(2016).
10. Siracusano, S., Baglio, V., Dijk, N. Van., Merlo, L. and Aricò, A.S., “Enhanced Performance and Durability of Low Catalyst Loading PEM Water Electrolyser Based on a Short-side Chain Perfluorosulfonic Ionomer,” Appl. Energy, 192(15), 477-489(2017).
11. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research,Development, and Demonstration Plan, Section 3.4 Fuel Cells,p. 1(2016).
12. Yoo, D. G., Kim, S. M., Hwang, B. C., Oh, S. H. and Park, K. P.,“Effect of Operation Temperature on the Durability of Membrane and Electrodes in PEM Water Electrolysis,” Korean Chem. Eng.Res., 61(1), in print (2023).
13. Dodwell, J., Maier, M., Majasan, J., Jervis, R., Brett, D. J. L. and Hinds, G., “Open-circuit Dissolution of Platinum from the Cathode in Polymer Electrolyte Membrane Water Electrolysers,” J.Power Sources, 498, 229937(2021).
14. Oh, S. H., Lim, D. H. and Park, K. P., “Durability Evaluation of PEMFC Electrode Using Oxygen as Cathode Gas,” Korean Chem.Eng. Res., 59(1), 11-15(2021).
15. Song J. H., Kim S. H., Ahn B. K, Ko J. J. and Park K. P., “Effect of Electrode Degradation on the Membrane Degradation in PEMFC,” Korean Chem. Eng. Res., 51(1), 68-72(2013).
16. Bessarabov, D., Wang, H., Li, H. and Zhao, N., “PEM Electrolysis for Hydrogen Production: Principles and Applications,” Boca Raton, FL, USA: CRC Press, 2015.
17. Lee, H., Kim, T. H., Son, I. J., Lee, J. H., Lim, T. W. and Park,K. P., “Effect of Temperature on Electrochemical Degradation of Membrane in PEMFC,” Korean Chem. Eng. Res., 47(4), 441-445 (2009).
18. Rakousky, C., Reimer, U., Wippermann, K., Carmo, M., Lueke,W. and Stolten, D., “An Analysis of Degradation Phenomena in Polymer Electrolyte Membrane Water Electrolysis,” J. Power Sources, 326(15), 120-128(2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로