Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 18, 2022
Revised November 1, 2022
Accepted January 13, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
바이오 기반 2,3-butanediol 증류 공정의 제어 및 동적 최적화
Process Control and Dynamic Optimization of Bio-based 2,3-butanediol Distillation Column
Abstract
화장품, 비료 등 다양한 분야에서 사용되는 2,3-butanediol (2,3-BDO) 는 고부가가치 물질로 그 수요가 점차 증가하
고 있다. 미생물의 발효로부터 생산된 2,3-BDO는 발효의 부산물을 포함하고 있을 뿐만 아니라 발효 조건에 따라 피드
조성의 변동이 심하여 생산물의 목표 순도에 도달하기 위한 분리 공정의 효율적인 운전이 어렵다. 따라서 본 연구에서는
바이오 기반 2,3-BDO 증류 공정의 동적 최적화를 통해 피드의 농도가 변화할 때 하단 생산물의 2,3-BDO 농도를 99 wt%
이상으로 제어할 수 있는 최적의 제어 경로를 탐색하였다. 정상 및 동적 상태 공정 모사와 Proportional integral (PI) 제
어기 설계 후 동적 최적화를 차례로 수행하였다. 그 결과 하단 생산물의 2,3-BDO 농도와 설정점 사이의 오차가 75.2%
감소하였다.
Butanediol (2,3-BDO), which is used in various fields such as cosmetics and fertilizers, is a high valueadded substance and the demand for it is gradually increasing. 2,3-BDO produced from the fermentation of
microorganisms not only contains by-products of fermentation, but also varies greatly in feed composition depending on
fermentation conditions, so it is difficult to efficiently operate the separation process to reach the target purity of the
product. Therefore, in this study, through dynamic optimization of the bio-based 2,3-BDO distillation process, the
optimal control route was explored to control the 2,3-BDO concentration of the bottom product to 99 wt% or more,
when feed concentration changes. Steady and dynamic state process simulation, proportional integral (PI) controller
design, and dynamic optimization were sequentially performed. As a result, the error between the 2,3-BDO
concentration and the set point of the bottom product was reduced by 75.2%
Keywords
References
for Biofuels, 12(1), 1-12(2019).
2. Ji, X. J., Huang, H. and Ouyang, P. K., “Microbial 2,3-butanediol Production: A State-of-the-art Review,” Biotechnology Advances,29(3), 351-364(2011).
3. Xiu, Z. L. and Zeng, A. P., “Present State and Perspective of Downstream Processing of Biologically Produced 1,3-propanediol and 2,3-butanediol,” Applied Microbiology and Biotechnology, 78(6), 917-926(2008).
4. Haveren, J. Van, Scott, E. L. and Sanders, J., “Bulk Chemicals from Biomass,” Biofuels, Bioproducts and Biorefining: Innovation for a Sustainable Economy, 2(1), 41-57(2008).
5. Maddox, I. S., “Microbial Production of 2, 3-butanediol,” Biotechnology Set, 269-291(2001).
6. Magee, R. J. and Kosaric, N., “The Microbial Production of 2,3-butanediol,” Advances in Applied Microbiology, in, Elsevier,pp. 89-161.
7. Maina, S., Prabhu, A. A., Vivek, N., Vlysidis, A., Koutinas, A., and Kumar, V., “Prospects on Bio-based 2,3-butanediol and Acetoin Production: Recent Progress and Advances,” Biotechnology Advances, 54(January 2021), 107783(2022).
8. Wong, C. L., Yen, H. W., Lin, C. L. and Chang, J. S., “Effects of pH and Fermentation Strategies on 2,3-butanediol Production with an Isolated Klebsiella sp. Zmd30 Strain,” Bioresource Technology, 152, 169-176(2014).
9. Wheat, J. A., Leslie, J. D., Tomkins, R. V., Mitton, H. E., Scott,D. S. and Ledingham, G. A., “Production and Properties of 2,3-butanediol: XXVIII. Pilot Plant Recovery of levo-2,3-butanediol from Whole Wheat Mashes Fermented by Aerobacillus Polymyxa,” Canadian Journal of Research, 26(11), 469-496(1948).
10. Davey, C. J., Havill, A., Leak, D. and Patterson, D. A., “Nanofiltration and Reverse Osmosis Membranes for Purification and Concentration of a 2,3-butanediol Producing Gas Fermentation Broth,” Journal of Membrane Science, 518, 150-158(2016).
11. Tinôco, D., Pateraki, C., Koutinas, A. A. and Freire, D. M. G.,“Bioprocess Development for 2,3-butanediol Production by Paenibacillus Strains,” ChemBioEng Reviews, 8(1), 44-62(2021).
12. Hong, J., Van Duc Long, N., Harvianto, G. R., Haider, J. and Lee, M., “Design and Optimization of Multi-effect-evaporationassisted Distillation Configuration for Recovery of 2,3-butanediol from Fermentation Broth,” Chemical Engineering and Processing - Process Intensification, 136(January), 107-115(2019).
13. Harvianto, G. R., Haider, J., Hong, J., Van Duc Long, N., Shim,J. J., Cho, M. H., Kim, W. K. and Lee, M., “Purification of 2,3-butanediol from Fermentation Broth: Process Development and Techno-economic Analysis,” Biotechnology for Biofuels, 11(1),
1-16(2018).
14. Sánchez-Ramírez, E., Quiroz-Ramírez, J. J., Hernández, S., Segovia Hernández, J. G., Contreras-Zarazúa, G. and Ramírez-Márquez,C., “Synthesis, Design and Optimization of Alternatives to Purify 2,3-Butanediol Considering Economic, Environmental and Safety Issues,” Sustainable Production and Consumption, 17,
15. Anderson, T. F. and Prausnitz, J. M., “Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 1. Vapor-liquid Equilibria,” Industrial & Engineering Chemistry Process Design and Development, 17(4), 552-561(1978).
16. Lv, F., Song, J., Giltrap, D., Feng, Y., Yang, X. and Zhang, S.,“Crop Yield and N2O Emission Affected by Long-term Organic Manure Substitution Fertilizer Under Winter Wheat-summer Maize Cropping System,” Science Total Environment, 732, 139321(2020).
17. Ellis, G., Control System Design Guide: Using Your Computer to Understand and Diagnose Feedback Controllers. tterworthHeinemann(2012).
18. Lawrence, P. S., Grünewald, M. and Agar, D. W., “Spatial Distribution of Functionalities in An Adsorptive Reactor at the Particle Level,” Catalysis Today, 105(3-4), 582-588(2005)