ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 14, 2022
Revised December 7, 2022
Accepted December 8, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar

1강원대학교 화학공학과 24341 강원도 춘천시 강원대학길 1 2강원대학교 토목공학과 24341 강원도 춘천시 강원대학길 1 3숭실대학교 건축학부 06978 서울특별시 동작구 상도로 369
1Department of Chemical Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Korea 2Department of Civil Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Korea 3School of Architecture, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978 Korea
kkyoseon@kangwon.ac.kr
Korean Chemical Engineering Research, May 2023, 61(2), 240-246(7), 10.9713/kcer.2023.61.2.24 Epub 31 May 2023
downloadDownload PDF

Abstract

친환경적인 태양에너지를 사용하여 대기오염물질인 NOx를 광화학적 반응으로 변환시키는 연구를 수행하였으며 광 촉매를 모르타르 표면에 코팅한 시편을 제조하여 NOx의 광화학적 전환율을 분석하였다. TiO2 광촉매를 거푸집의 하부 에 먼저 넣고 시멘트 모르타르를 넣은 후 시멘트 모르타르를 양생시켜 광촉매 코팅된 콘크리트를 제조하였다. 거푸집 바닥에 미리 grease를 도포함으로써 양생 후에 콘크리트가 쉽게 탈형될 수 있도록 하였다. TiO2 코팅 양, UV-A 광 세 기, 전체 기체 유량, 상대 습도, 그리고 초기 NOx 농도와 같은 공정 변수를 체계적으로 변화시켜서 광촉매 반응에 의 한 NOx의 전환율을 조사하였다. 제조된 광촉매 코팅된 콘크리트가 다양한 공기 중의 공정 변수 조건에서 NOx를 성공 적으로 전환시키는 것을 확인하였다. 본 연구 결과는 향후 NOx, SOx, VOCs 등의 대기오염물질을 효과적으로 제어하 기 위한 건물, 터널, 또는 도로와 같은 인프라 시설의 설계를 위한 기초 자료로 활용될 수 있을 것으로 본다.

his study was performed to convert NOx in atmosphere by photochemical reaction utilizing the ecofriendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

References

1. Normann, F., Andersson, K., Leckner, B. and Johnsson, F., “Emission Control of Nitrogen Oxides in the Oxy-fuel Process,” Prog.Energy Combust. Sci., 35, 385-397(2009).
2. Lee, B. Y., Jayapalan, A. R., Bergin, M. H. and Kurtis, K. E.,“Photocatalytic Cement Exposed to Nitrogen Oxides: Effect of Oxidation and Binding,” Cem. Concr. Res., 60, 30-36(2014).
3. Ballari, M. M., Hunger, M., Hüsken, G. and Brouwers, H. J. H.,“NOx Photocatalytic Degradation Employing Concrete Pavement Containing Titanium Dioxide,” Appl. Catal. B Environ., 95, 245-254(2010).
4. Kang, X., Liu, S., Dai, Z., He, Y., Song, X. and Tan, Z., “Titanium Dioxide: From Engineering to Applications,” Catalysts., 9,2(2019).
5. Choi, W., “Studies on TiO2 Photocatalytic Reactions,” Appl. Chem.Eng., 14, 1011-1022(2003).
6. Chen, J. and Poon, C., “Photocatalytic Construction and Building Materials: From Fundamentals to Applications,” Build. Environ.,44, 1899-1906(2009).
7. Wang, Z., Gauvin, F., Feng, P., Brouwers, H. J. H. and Yu, Q.,“Self-cleaning and Air Purification Performance of Portland Cement Paste with Low Dosages of Nanodispersed TiO2 Coatings,” Constr. Build. Mater., 263, 120558(2020).
8. Guo, M. Z. and Poon, C. S., “Photocatalytic NO Removal of Concrete Surface Layers Intermixed with TiO2”, Build. Environ., 70, 102-109(2013).
9. de Melo, J. V. S. and Trichês, G., “Evaluation of the Influence of Environmental Conditions on the Efficiency of Photocatalytic
Coatings in the Degradation of Nitrogen Oxides (NOx),” Build.Environ., 49, 117-123(2012).
10. Chen, C., Tang, B., Cao, X., Gu, F. and Huang, W., “Enhanced Photocatalytic Decomposition of NO on Portland Cement Concrete Pavement Using Nano-TiO2 Suspension,” Constr. Build. Mater.,275, 122-135(2021).
11. Serpone, N., “Heterogeneous Photocatalysis and Prospects of TiO2-Based Photocatalytic DeNOxing the Atmospheric Environment,” Catalysts 8, 553(2018).
12. Zouzelka, R. and Rathousky, J., “Photocatalytic Abatement of NOx Pollutants in the Air Using Commercial Functional Coating with Porous Morphology,” Appl. Catal. B Environ., 217, 466-476(2017).
13. Aydin, S., Hilmi Aytaç, A. and Ramyar, K., “Effects of Fineness of Cement on Polynaphthalene Sulfonate Based Superplasticizer-cement Interaction,” Constr. Build. Mater., 23, 2402-2408 (2009).
14. International Organization for Standardization, “Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics) − Test Method
for Air-purification Performance of Semiconducting Photocatalytic Materials − Part 1: Removal of Nitric Oxide,” ISO. 22197-1 (2016).
15. Fujishima, A., Zhang, X. and Tryk, D. A., “TiO2 Photocatalysis and Related Surface Phenomena,” Surf. Sci. Rep., 63, 515-582 (2008).
16. Obee, T. N. and Brown, R. T., “TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene,” Environ. Sci. Technol., 29, 1223-1231(1995).
17. Yan, M., Chen, F., Zhang, J. and Anpo, M., “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties,” J. Phys. Chem. B, 109, 8673-8678(2005).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로