Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 31, 2022
Revised November 23, 2022
Accepted November 1, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
메탄연료사용을 위한 고체산화물 연료전지용 Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ 연료극 개발
Development of Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ Anode for Methane Fuels in Solid Oxide Fuel Cells
Abstract
고온 운전이 가능한 고체산화물 연료전지의 최대의 장점은 내부개질을 통한 연료의 다양성에 있다. 하지만 기존의
Ni/SYZ전극은 탄소침적에 대한 단점을 가지고 있고, 이를 해결하기 위해 페로브스카이트 구조의 연료극 개발이 진행
되었다. 본 연구에서는 페로브스카이트 대체 연료극의 낮은 전기전도도 및 촉매활성을 향상시키기 위해 rGO(reduced
graphene oxide)를 Sr0.92Y0.08TiO3(SYT)와 혼합하여 연료극에 대한 성능 평가를 진행하였다. Ni/YSZ(yttria stabilized
zirconia)와 SYT에 1wt%rGO를 첨가하여 연료극을 합성하였다. 고온 산화조건에서 전극 제조 후 rGO의 유무 확인은
XPS 및 라만 분석을 통해 확인하였다. rGO/SYT 연료극은 rGO 대비 H2
에서 3배, CH4
에서 6배의 매우 큰 성능 향상
을 보여주었다.
Solid oxide fuel cell has received more attention recently due to the fuel flexibility via internal reforming.
Commonly used Ni/YSZ anode, however, can be easily deactivated by carbon coking in hydrocarbon fuels. The carbon
deposition problem can minimize by developing alternative perovskite anode. This study is focused on improving conductivity
and catalytic activity of the perovskite anode by introducing rGO (reduced graphene oxide). Sr0.92Y0.08TiO3(SYT) anode
with perovskite structure was synthesized with 1wt% of rGO. The presence of rGO during anode fabricating process and
cell operation is confirmed through XPS and Raman analysis. The maximum power density of rGO/SYT anode improved
to 3 times in H2 and 6 times in CH4 comparing to that of SYT anode due to the high electrical conductivity and good
catalytic activity for CH4.
References
2. Mogensen, M and Kammer, K., “Conversion of Hydrocarbons in Solid Oxide Fuel Cells,” Ann. Rev. Mater. Res., 33, 321-331(2003).
3. Zhan, Z. and Barnett, S. A., “An Octane-fueled Solid Oxide Fuel Cell,” Science, 308(5723), 844-847(2005).
4. Steele, B. C. H., “Running on Natural Gas,” Nature, 400(6745),619-621(1999).
5. Dicks, A. L., “Hydrogen Generation from Natural Gas for the Fuel Cell Systems of Tomorrow,” J. Power Sources., 61(1-2),113-124(1996).
6. Iwata, T., “Characterization of Ni-ysz Anode Degradation for Substrate-type Solid Oxide Fuel Cells,” J. Electrochem. Soc.,143(5), 1521(1996).
7. Koh, J. H., Yoo, Y. S., Park, J. W. and Lim, H. C., “Carbon Deposition and Cell Performance of Ni-YSZ Anode Support SOFC with Methane Fuel,” Solid State Ionics, 149(3-4), 157-166(2002).
8. Cheng, Z. and Meilin, L., “Characterization of Sulfur Poisoning of Ni-YSZ Anodes for Solid Oxide Fuel Cells Using in situ Raman Microspectroscopy,” Solid State Ionics, 178(13-14) 925-935(2007).
9. Yun, J. W., Yoon, S. P., Han, J., Park, S., Kim, H. S. and Nam, S.W., “Ceria Coatings Effect on H2S Poisoning of Ni/YSZ Anodes for Solid Oxide Fuel Cells,” J. Electrochem. Soc., 157(12), B1825(2010).
10. Richter, J., Holtappels, P., Graule, T., Nakamura, T. and Gauckler, L. J., “Materials Design for Perovskite SOFC Cathodes,”Monatshefte Chem., 140(9), 985-999(2009).
11. Anderson, H. U., “Review of p-type Doped Perovskite Materials for SOFC and Other Applications,” Solid State Ionics, 52(1-3), 33-41(1992).
12. Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu,
S., Lin, Y. S. and Da Costa, J. D., “Mixed Ionic-electronic Conducting (MIEC) Ceramic-based Membranes for Oxygen Separation,” J. Membrane Sci., 320(1-2), 13-41(2008).
13. Kim, H. S., Yoon, S. P., Yun, J. W., Song, S. A., Jang, S. C., Nam,S. W. and Shul, Y. G., “Sr0.92Y0.08TiO3-δ/Sm0.2Ce0.8O2-δ Anode
for Solid Oxide Fuel Cells Running on Methane,” Int. J. Hydrogen Energ., 37(21), 16130-16139(2012).
14. Park, E. K., Lee, S. and Yun, J. W., “Characteristics of Sr0.92Y0.08Ti1-yNiyO3-δ Anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ Anode Using
CH4 Fuel in Solid Oxide Fuel Cells,” Appl. Surf. Sci., 429, 171-179(2018).
15. Lee, J. M. and Yun, J. W., “Characteristics of Sr0.92Y0.08Ti0.7Fe0.3O3-δ Anode Running on Humidified Methane Fuel in Solid Oxide
Fuel Cells,” Ceramics International, 42(7), 8698-8705(2016).
16. Jee, Y., Karimaghaloo, A., Andrade, A. M., Moon, H., Li, Y.,Han, J. W., Ji, S., Ishihara, H., Su, P.-C., Cha, S. W., Tung, V. C. and Lee, M. H., “Graphene-based Oxygen Reduction Electrodes for Low Temperature Solid Oxide Fuel Cells,” Fuel Cells, 17(3),344-352(2017).
17. Gómez-Gómez, A., Ramírez, C., Llorente, J., García, A., Moreno,P., Reveron, H., Chevalier, J., Osendi, M. I. Belmonte, M. and
Miranzo, P., “Improved Crack Resistance and Thermal Conductivity of Cubic Zirconia Containing Graphene Nanoplatelets,” J.Eur. Ceram. Soc., 40(4), 1557-1565(2020).
18. Glukharev, A., Glumov, O., Temnikova, M., Shamshirgar, A. S.,Kurapova, O., Hussainova, I. and Konakov, V., “YSZ-rGO Composite Ceramics by Spark Plasma Sintering: The Relation Between Thermal Evolution of Conductivity, Microstructure and Phase Stability,” Electrochim. Acta, 367, 137533(2021).
19. Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S. and Atieh,M. A., “XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods,” Ceramics International, 45(11), 14439-14448(2019).
20. Garcia-Basabe, Y., Peixoto, G. F., Grasseschi, D., Romani, E. C.,Vicentin, F. C., Villegas, C. E. P., Rocha, A. R. and Larrude, D. G.,“Phase Transition and Electronic Structure Investigation of MoS2-reduced Graphene Oxide Nanocomposite Decorated with Au Nanoparticles,” Nanotechnology, 30(47), 475707(2019).