Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 26, 2023
Revised May 12, 2023
Accepted June 13, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
PVC를 원료로 탄소코팅한 Mo6S8의 합성 및 전기화학적 특성
Synthesis and Electrochemical Properties of Carbon Coated Mo6S8 using PVC
Abstract
마그네슘 이차전지는 기존에 사용되고 있는 리튬이온전지를 대체할 수 있는 가능성으로 인해 많은 주목을 받고 있
다. 마그네슘 이차전지용 양극활물질인 Mo6S8
을 MSS (Molten Salt Synthesis)법으로 합성하였고, Mo6S8
의 전기화학
적 특성을 향상시키기 위하여 탄소소재인 PVC (Poly Vinyl Chloride)를 첨가하여 탄화시켰다. 물질의 결정 구조와 크
기, 표면 상태는 XRD (X-ray Diffraction), SEM (Scanning Electron Microscope)으로 분석하였다. 전기화학적 특성은
배터리충방전기를 이용하여 충·방전 프로파일과 출력 특성 등을 측정하였다. PVC를 2.81 wt% 첨가한 물질의 경우,
0.125 C-rate에서 85.8 mAh/g, 0.5 C-rate에서 69.2 mAh/g, 1 C-rate에서 60.5 mAh/g의 용량을 나타내어 우수한 출력
특성을 보여주었다.
Magnesium secondary batteries are attracting much attention due to their potential to replace
conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by
molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal
structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge
profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate
capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.
References
2. Chusid, O., Gofer, Y., Gizbar, H., Vestfrid, Y., Levi, E., Aurbach, D. and Riech, I., “Solid-state Rechargeable Magnesium Batteries,” Adv. Mater., 15(7-8), 627-629(2003).
3. Cabello, M., Medina, A., Alcántara, M., Nacimiento, F., PérezVicente, C. and Tirado, J. L., “A Theoretical and Experimental Study of Hexagonal Molybdenum Trioxide as Dual-ion Electrode for Rechargeable Magnesium Battery,” J. Alloys Compd., 831,154795(2020).
4. Attias, R., Salama, M., Hirsch, B., Gofer, Y. and Aurbach, D.,“Solvent Effects on the Reversible Intercalation of MagnesiumIons into V2O5 Electrodes,” ChemElectroChem, 5(22), 3514-3524(2018).
5. Kumagai, N., Komaba, S., Sakai, H. and Kumagai, N., “Preparation of Todorokite-type Manganese-based Oxide and its Application as Lithium and Magnesium Rechargeable Battery Cathode,”J. Power Sources, 97-98, 515-517(2001).
6. Lee, H. Y., Baek, J. K., Jang, S. W., Lee, S. M., Hong, S. T., Lee,K. Y. and Kim, M. H.,“Characteristics of Carbon-coated Graphite Prepared from Mixture of Graphite and Polyvinylchloride as Anode Materials for Lithium Ion Batteries,” J. Power Sources,101(2), 206-212(2001).
7. Nozaki, H, Nagaoka, K., Hoshi, K., Ohta, N. and Inagaki, M.,“Carbon-coated Graphite for Anode of Lithium Ion Rechargeable Batteries: Carbon Coating Conditions and Precursors,” J. Power Sources, 194(1), 486-493(2009).
8. Kurihara, H., Yajima, T. and Suzuki, S., “Preparation of Cathode Active Material for Rechargeable Magnesium Battery by Atmospheric Pressure Microwave Discharge Using Carbon Felt Pieces,”Chem. Lett., 37, 376-377(2008).
9. Inagaki, M., “Carbon Coating for Enhancing the Functionalities of Materials,” Carbon, 50(9), 3247-3266(2012).
10. Saha, P., Datta, M. K. and Kumta, P. N., “A Convenient Approach to Mo6S8 Chevrel Phase Cathode for Rechargeable Magnesium Battery,” J. Electrochem. Soc., 161(4), A593-A598(2014).
11. Ryu, A., Park, M. S., Cho, W. S., Kim, J. S. and Kim, Y. J.,“Size-controlled Chevrel Mo6S8 as Cathode Material for Mg Rechargeable Battery,” Bull. Korean Chem. Soc., 34(10), 3033-3038(2013).
12. Levi, E., Gofer, Y. and Aurbach, D., “On the Way to Rechargeable Mg Batteries : the Challenge of New Cathode Materials,” Chem.Mater., 22, 860-868(2010).
13. Lancry, E., Levi, E., Mitelman, A., Malovany, S. and Aurbach,D., “Molten Salt Synthesis (MSS) of Cu2Mo6S8-New Way for Large-scale Production of Chevrel Phases,” J. Solid State Chem.,179(6), 1879-1882(2006).
14. Levi, M. D., Lancri, E., Levi, E., Gizbar, H., Gofer, Y. and Aurbach,D., “The Effect of the Anionic Framework of Mo6X8 Chevrel Phase (X = S, Se) on the Thermodynamics and the Kinetics of the Electrochemical Insertion of Mg2+ Ions,” Solid State Ion.,176(19-22), 1695-1699(2005).
15. Levi, M. D. and Aurbach, D., “A Comparison Between Intercalation of Li and Mg Ions into the Model Chevrel Phase Compound (MxMo6S8): Impedance Spectroscopic Studies,” J. Power Sources, 146(1-2), 349-354(2005).
16. Suresh, G. S., Levi, M. D. and Aurbach, D., “Effect of Chalcogen Substitution in Mixed Mo6S8-nSen (n = 0,1,2) Chevrel Phases on the Thermodynamics and Kinetics of Reversible Mg Ions Insertion,” Electrochim. Acta, 53(11), 3889-3896(2008).
17. Gershinsky, G., Haik, O., Salitra, G., Grinblat, J., Levi, E., Nessim,G. D., Zinigrad, E. and Aurbach, D., “Ultra Fast Elemental Synthesis of High Yield Copper Chevrel Phase with High Electrochemical Performance,” J. Solid State Chem., 188, 50-58(2012).
18. Lancry, E., Levi, E., Gofer, Y., Levi, M., Salitra, G. and Aurbach,D., “Leaching Chemistry and the Performance of the Mo6S8 Cathodes in Rechargeable Mg Batteries,” Chem. Mater., 16, 2832-2838(2004).
19. Levi, E., Gershinsky, G., Aurbach, D., Isnard, O. and Ceder, G.,“New Insight on the Unusually High Ionic Mobility in Chevrel Phases,” Chem. Mater., 21, 1390-1399(2009).
20. Saha, P., Datta, M. K., Velikokhatnyi, O. I., Manivannan, A.,Alman, D. and Kumta, P. N., “Rechargeable Magnesium Battery:Current Status and Key Challenges for the Future,” Prog. Mater.Sci., 66, 1-86(2014).