Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 30, 2023
Revised July 12, 2023
Accepted July 13, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향
Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane
Abstract
고분자 전해질 연료전지(PEMFC) 내구성 향상을 위해서 고분자 막의 내구성을 짧은 시간에 정확히 평가하는 것은
중요하다. 고분자 막의 화학적 가속 내구 평가 시험 조건은 고전압, 고온, 저가습, 고가스압이다. 이들 조건들을 변화시
키며 프로토콜을 개발한다고 할 수 있다. 그러나 각 시험 조건이 고분자 막을 열화시키는데 상대적으로 얼마나 많은
영향을 주는지 연구되지 않았다. 고분자 막 화학적 가속 열화 실험에서 4가지 인자(조건)들의 영향력을 요인실험법을
통해 검토하였다. 가속 열화 후 고분자 막 열화 정도는 수소투과도와 불소 이온 유출 농도 측정으로 알 수 있었고, 불
소 이온 농도 차이에 의해 8 조건의 고분자 막 열화 순위를 결정할 수 있었다. 고분자 막 열화 인자의 영향력은 전압
> 온도 > 산소압 > 습도 순임을 보였다. 고분자 막 화학적 열화에 전극 촉매 열화가 영향을 줌을 확인하였다.
In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to
accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically
accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure.
It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test
condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of
the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree
of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability
and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane
under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane
degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the
degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.
References
2. Department of Energy, https://www.energy.gov (2016).
3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html (2016).
4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org (2016).
5. Ministry of Science and Technology of the People’s Republic of China, http://en.most.gov.cn/eng/index.htm (2016).
6. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research,Development, and Demonstration Plan, Section 3.4 Fuel Cells,p. 1(2016).
7. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S.“Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc. 140(10), 2872-2877(1993).
8. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D.P., “Aging Mechanism and lifetime of PEFC and DMFC,” J.Power Sources, 127(1-2), 127-134(2004).
9. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., “Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack,” Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).
10. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., “Nafion Degradation in PEFCs from End Plate Iron Contamination,”Electrochim. Acta, 48(11), 1543-1548(2003).
11. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., “Durability of PEFCs at High Humidity Conditions,” J. Electrochem. Soc., 152(1), A104-A113(2005).
12. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C.and Tisack, M. E., “Advanced Materials of Improved PEMFC Performance and Life,” J. of Power Sources, 131(1-2), 41-48(2004).
13. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd.,Chichester, England, 611-612(2003).
14. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P.,“Degradation of Polymer Electrolyte Membranes,” Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).
15. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, “Doe Cell Component Accelerated Stress Test Protocols For Pem Fuel Cells.”
16. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., “Cell Evaluation and Analysis Protocol Guidline,” NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
17. Mukundan, R., “Fuel Cell – Performance and Durability FC139 – Modeling, Evaluation, Characterization,” 2016 DOE Fuel Cell Technologies Office Annual Merit Review, June 8th(2016).
18. Oh, S. H., Park, J. S., Jung, S. G., Jeon, J. H. and Park, K. P., “Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane,” Korean Chem. Eng. Res.,59(1), 49-53(2021).
19. Endoh, E., Terazono, S., Widjaja, H. and Takimoto, Y., “Degradation Study of MEA for PEMFCs under Low Humidity Conditions,” Electrochem, Solid-State Lett., 7, 145-161(2004).
20. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T.W. and Park, K. P., “Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test,”Korean J. Chem. Eng., 28(2), 487-491(2011).
21. Atrazhev, V. V., Erikhman, N. S. and Burlatsky, S. F., “The Potential of Catalytic Particle in ion Exchange Membrane,” J.Electroanalytical Chem., 601, 251-259(2007).