ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 13, 2023
Revised April 11, 2023
Accepted May 26, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire

금오공과대학교 산학협력단 39177 경상북도 구미시 대학로 61
Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology, 61 Daehak-ro (yangho-dong), Gumi, Gyeongbuk, 39177, Korea
youngsil@kumoh.ac.kr
Korean Chemical Engineering Research, August 2023, 61(3), 456-462(7), 10.9713/kcer.2023.61.3.456 Epub 31 August 2023
downloadDownload PDF

Abstract

탄소나토튜브를 투명 전극에 활용하기 위한 필수요소인 정제과정없이 무정제 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT)와 은나노와이어(silver nanowire) 분산액을 제조하여 폴리에틸렌 테레프탈레이트 (polyethylene terephthalate, PET) 필름에 바 코팅을 이용하여 전기전도성 투명전극을 제조하였다. PET 기판 위에 SWCNT 및 은 나노와이어를 각각 포함하는 코팅층을 상호 교차시켜 적층함으로서 은나노와이어의 전기 전도도와 투 과도를 극대화시키고 헤이즈 (haze)가 증가되는 단점을 극복하기 위해 SWCNT를 도입하였고, 무정제 SWCNT내에 존 재하는 금속 촉매의 산화에 의해서 항온항습 테스트 후 저항이 급격하게 증가하는 문제를 은 나노와이어가 전기적 네 트워크 형성에 기여하여 산화에 대한 안정성을 확보할 수 있었다. SWCNT함량이 0.025 wt% 인 분산액을 PET 기판 에 먼저 코팅하고 그 위에 은 나노와이어의 함량이 0.05 wt%인 분산액을 코팅한 투명전극의 시트 저항은 47 Ω/□, 투 과도는 96.72%, 헤이즈는 1.93% 로 전기적 광학적 특성이 우수하게 나왔고, 산화 안정성 평가를 위한 항온 항습 실험 후 시트 저항의 변화율이 6.4% 로 적게 나타나서 장기적 사용에 적합하다는 것을 알 수 있었다. 무정제 SWCNT 사용 함으로 저비용, 친환경 하이브리드 투명전극을 상업적으로 활용 가능한 수준의 제품이 개발되었다.

An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.

References

1. Lewis, J., Grego, S., Chalamala, B., Vick, E. and Temple, D.“Highly Flexible Transparent Electrodes for Organic LightEmitting Diode-Based Displays,” Appl. Phys. Lett., 85, 3450-3452(2004).
2. Wu, H., Kong, D. S., Ruan, Z. C., Hsu, P. C., Wang, S., Yu, Z.F., Carney, T. J., Hu, L. B., Fan, S. H. and Cui, Y., “A Transparent Electrode Based on A Metal Nanotrough Network,” Nat.Nanotechnol., 8, 421-425(2013).
3. Peng, H. L. et al. “Topological Insulator Nanostructures for Near-infrared Transparent Flexible Electrodes,” Nature Chem., 4,281-286(2012).
4. Li, B., Cao, X., Ong, H. G., Cheah, J. W., Zhou, X., Yin, Z., Li,H., Wang, J., Boey, F., Huang, W. and Zhang, H., “All-Carbon Electronic Devices Fabricated by Directly Grown Single-Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes,”Adv. Mater., 22, 3058-3061(2010).
5. Cai, D., Song, M. and Xu, C., “Highly Conductive CarbonNanotube/Graphite-Oxide Hybrid Films,” Adv. Mater., 20, 1706-1709(2008).
6. Kim, S. H., Song, W., Jung, M. W., Kang, M.-A., Kim, K., Chang,S.-J., Lee, S. S., Lim, J., Hwang, J., Myung, S. and An, K.-S.,“Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors,” Adv. Mater., 26,4247-4252(2014).
7. Lv, R., Cruz-Silva, E. and Terrones, M., “Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene–Nanotube Hybrids and More,” ACS Nano, 8, 4061-4069(2014).
8. Kholmanov, I. N., Magnuson, C. W., Piner, R., Kim, J. Y., Aliev,A. E., Tan, C., Kim, T. Y., Zakhidov, A. A., Sberveglieri, G., Baughman, R. H. and Ruoff, R. S., “Optical, Electrical, and Electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films,” Adv. Mater., 27, 3053-3059(2015).
9. Kim, Y. S., Kumar, K., Fisher, F. T. and Yang, E. H., “Out-ofplane Growth of CNTs on Graphene for Supercapacitor Applications,” Nanotechnology, 23, 015301(2011).
10. Tung, V. C., Chen, L-M., Allen, M. I., Wassei, J. K,, Nelson, K.,Kaner, R. B. and Yang, Y., “Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for HighPerformance Transparent Conductors,” Nano Lett., 9, 1949-1955(2009).
11. Cui, X,, Lv, R., Sagar, R. U. R., Liu, C. and Zhang, Z., “Reduced Graphene Oxide/Carbon Nanotube Hybrid Film as High Performance Negative Electrode for Supercapacitor,” Electrochim. Acta,169, 342-350(2015).
12. Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature,354, 56-58(1991).
13. Hone, J., Whitney, M. and Zettl, A., “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Synth. Met., 103, 2498-2499(1999).
14. Frank, S., Poncharal, P., Wang, Z. L. and de Heer, W. A., “Carbon Nanotube Quantum Resistors,” Science, 280, 1744-1746(1998).
15. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu,C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273, 483-487(1996).
16. Ajayan, P. M., “Nanotubes from Carbon,” Chem. Rev., 99, 1787-1800(1999).
17. Popov, V. N., “Carbon Nanotubes: Properties and Applications,”Mater. Sci. Eng. R Rep., 43, 61-102(2004).
18. Hone, J., Whitney, M., Piskoti, C. and Zettl, A., “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 59,R2514-R2516(1999).
19. Park, S. and Ruoff, R. S., “Chemical Methods for the Production of Graphenes,” Nat. Nanotechnol., 4, 217-224(2009).
20. Geim, A. K. and Novoselov, K. S., “The Rise of Graphene,” Nat.Mater., 6, 183-191(2007).
21. Ellmer, K., “Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes,” Nature Photon.,6, 809-817(2012).
22. Hu, L., Hecht, D. S. and Gruner, G., “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett., 4,2513-2517(2004).
23. Dan, B., Irvin, G. C. and Pasquali, M., “Ontinuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films,”ACS Nano, 3, 835-843(2009).
24. Nirmalraj, P. N., Lyons, P. E., De, S., Coleman, J. N. and Boland, J.J., “Electrical Conductivity in Single-Walled Carbon Nanotube Networks,” Nano Lett., 9, 3890-3895(2009).
25. Coskun, S., Ates, E. S. and Unalan, H. E., “Optimization of Silver Nanowire Networks for Polymer Light Emitting Diode Electrodes,” Nanotechnology, 24, 125202/1-8(2013).
26. Zhao, J., Sun, H., Dai, S., Wang, Y. and Zhu, J. “Electrical Breakdown of Nanowires,” Nano Lett., 11, 4647-1651(2011).
27. Khaligh, H. H. and Goldthorpe, I. A. “Failure of Silver Nanowire Transparent Electrodes Under Current Flow,” Nanoscale Res.Lett., 8, 235/1-6(2013).
28. Liu, Y., Chang, Q. and Huang, L., “Transparent, Flexible Conducting Graphene Hybrid Films with A Subpercolating Network of Silver Nanowires,” J. Mater. Chem. C, 17, 2970-2974(2013).
29. Ahn, Y., Jeong, Y. and Lee, Y., “Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide,” ACS Appl. Mater. Interfaces, 4, 6410-6414(2012).
30. Tokuno, T., Nogi, M., Jiu, J. and Suganuma, K., “Hybrid Transparent Electrodes of Silver Nanowires and Carbon Nanotubes: A Low-Temperature Solution Process,” Nanoscale Res. Lett., 7, 281/1-7(2012).
31. Lee, C. S., Yoo, J. E., Shin, K., Park C. O. and Bae, J., “Carbon Nanotube-Silver Nanowire Composite Networks On flexible Substrates: High Reliability and Application for Supercapacitor Electrodes,” Phys. Status Solidi A, 211(12), 2890-2897(2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로