Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 4, 2023
Revised July 10, 2023
Accepted July 11, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
메탄 습식 개질 반응용 Ni/CexZr1-xO2-Al2O3 촉매의 반응 특성: CexZr1-xO2 첨가에 의한 물 활성화 효과
Catalytic Behavior of Ni/CexZr1-xO2-Al2O3 Catalysts for Methane Steam Reforming: The CexZr1-xO2 Addition Effect on Water Activation
Abstract
본 연구에서는 메탄 습식 개질 반응용 Ni/Al2O3 촉매에 첨가된 CexZr1-xO2(CZ)가 촉매 반응 효율에 미치는 효과를
조사하였다. 반응 실험 결과, CZ 조촉매가 첨가된 Ni/Al2O3 촉매는 동일 온도, 동일 steam to carbon ratio에서 Ni/Al2O3
촉매보다 높은 메탄 전환율과 수소 수율을 보였다. 특성 분석 결과, 두 촉매 모두 유사한 기공 구조와 비슷한 Ni 분산
도를 가지고 있어 이는 반응 효율에 영향을 미치는 요소가 아님을 확인하였다. 하지만, 라만 분광 분석결과에서 CZ 조
촉매 첨가 Ni/Al2O3 촉매는 Ni/Al2O3 촉매와 달리 CZ상에서 oxygen vacancy가 존재하고, 이는 상대적으로 낮은 반응
온도에서 물 활성화를 촉진시키는 것으로 확인되었다. CZ 조촉매 상의 oxygen vacancy에 의한 물 활성화는 저온 영
역에서 CZ 조촉매 첨가 Ni/Al2O3 촉매의 습식 개질 반응 성능을 증대시켰다.
In this study, we investigated the effect of the CexZr1-xO2 (CZ) addition onto Ni/Al2O3 catalysts on the
catalytic performance in methane steam reforming. In the reaction results, the CZ-added Ni/Al2O3 catalyst showed
higher CH4 conversion and H2 yield under the same reaction conditions than Ni/Al2O3. From the characterization data,
the two catalysts had similar support porosity and Ni dispersion, confirming that the two properties could not determine
the catalytic performance. However, the oxygen vacancy over the CZ-added Ni/Al2O3 catalyst induced an efficient steam
activation at low reaction temperatures, resulting in an increase in the catalytic activity and H2 yield.
References
2. Yoo, J., Park, S., Song, J. H., Yoo, S. and Song, I. K., “Hydrogen Production by Steam Reforming of Natural Gas Over Butyric Acid-assisted Nickel/alumina Catalyst,” International Journal of Hydrogen Energy, 42(47), 28377-28385(2017).
3. Iglesias, I., Baronetti, G. and Mariño, F., “Ni/Ce0.95M0.05O2−d (M = Zr, Pr, La) for Methane Steam Reforming at Mild Conditions,” International Journal of Hydrogen Energy, 42(50), 29735-29744(2017).
4. Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S.and Gong, J., “Ceria-promoted Ni/SBA-15 Catalysts for Ethanol Steam Reforming with Enhanced Activity and resistance to deactivation,” Applied Catalysis B: Environmental, 176-177, 532-541(2015).
5. Ogo, S. and Sekine, Y., “Recent Progress in Ethanol Steam Reforming Using Non-noble Transition Metal Catalysts: A Review,” Fuel Processing Technology, 199, 106238-106249(2020).
6. Lertwittayanon, K., Youravong, W. and Lau, W. J., “Enhanced Catalytic Performance of Ni/α-Al2O3 Catalyst Modified with
CaZrO3 Nanoparticles in Steam-methane Reforming,” International Journal of Hydrogen Energy, 42(47), 28254-28265(2017).
7. Wang, W., Wang, H., Yang, Y. and Jiang, S., “Ni-SiO2 and NiFe-SiO2 Catalysts for Methane Decomposition to Prepare Hydrogen and Carbon Filaments,” International Journal of Hydrogen Energy,37(11), 9058-9066(2012).
8. Lertwittayanon, K., Atong, D., Aungkavattana, P., Wasanapiarnpong, T., Wada, S. and Sricharoenchaikul, V., “Effect of CaO-ZrO2
Addition to Ni Supported on γ-Al2O3 by Sequential Impregnation in Steam Methane Reforming,” International Journal of Hydrogen Energy, 35(22), 12277-12285(2010).
9. Roh, H., Eum, I. and Jeong, D., “Low Temperature Steam Reforming of Methane over Ni-Ce(1−x)Zr(x)O2 Catalysts Under Severe Conditions,” Renewable Energy, 42, 212-216(2012).
10. Iglesias, I., Baronetti, G., Alemany, L. and Mariño, F., “Insight into Ni/Ce1−xZrxO2−δ Support Interplay for Enhanced Methane Steam
Reforming,” International Journal of Hydrogen Energy, 44(7),3668-3680(2019).
11. Kusakabe, K., Sotowa, K., Eda, T. amd Iwamoto, Y., “Methane Steam Reforming over Ce–ZrO2-supported Noble Metal Catalysts at Low Temperature,” Fuel Processing Technology, 86(3),319-326(2004).
12. Pompeo, F., Gazzoli, D. and Nichio, N. N., “Stability Improvements of Ni/α-Al2O3 Catalysts to Obtain Hydrogen from Methane Reforming,” International Journal of Hydrogen Energy, 34(5),2260-2268(2009).
13. Escritori, J. C., Dantas, S. C., Soares, R. R. and Hori, C. E., “Methane Autothermal Reforming on Nickel–ceria–zirconia Based Catalysts,” Catalysis Communications, 10(7), 1090-1094(2009).
14. Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M. and Wang, Y., “Enhanced Activity of CeO2–ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure,” Energy & Fuels, 30(1), 638-647(2015).
15. Do, L. T., Nguyen-Huy, C. and Shin, E. W., “NiK/yCexZr1-xO2-macroporous Al2O3 Catalysts for Cracking of Vacuum Residual oil with Steam,” Applied Catalysis A: General, 525, 23-30(2016).
16. Halabi, M., Croon, M. D., Schaaf, J. V., Cobden, P. and Schouten,J., “Low Temperature Catalytic Methane Steam Reforming over
Ceria–zirconia Supported Rhodium,” Applied Catalysis A: General, 389(1-2), 68-79(2010).
17. Salcedo, A., Lustemberg, P. G., Rui, N., Palomino, R. M., Liu,Z., Nemsak, S., Senanayake, S. D., Rodriguez, J. A., GandugliaPirovano, M. and Irigoyen, B., “Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO2 Catalyst: Active Sites and the Role of Metal–Support Interactions,” ACS Catalysis, 11(13),8327-8337(2021).
18. Ochoa, A., Bilbao, J., Gayubo, A. G. and Castaño, P., “Coke Formation and Deactivation During Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review,” Renewable and Sustainable Energy Reviews, 119, 109600-109629(2020).
19. Ashok, J., Wai, M. H. and Kawi, S., “Nickel-based Catalysts for High-temperature Water Gas Shift Reaction-Methane Suppression,” ChemCatChem, 10(18), 3927-3942(2018).
20. Chen, L., Qi, Z., Zhang, S., Su, J. and Somorjai, G. A., “Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect,” Catalysts, 10(8), 858-876(2020).
21. Toledo, R. R., Sánchez, M. B., Porras, G. R., Ramírez, R. F.,Larios, A. P., Ramirez A. M. and Rosales, M. M., “Effect of Mg as Impurity on the Structure of Mesoporous γ-Al2O3: Efficiency as Catalytic Support in HDS of DBT,” International Journal of Chemical Reactor Engineering, 1-16(2018).
22. Pu, J., Luo, Y., Wang, N., Bao, H., Wang, X. and Qian, E. W.,“Ceria-promoted Ni@Al2O3 Core-shell Catalyst for Steam Reforming of Acetic Acid with Enhanced Activity and Coke Resistance,” International Journal of Hydrogen Energy, 43(6), 3142-3153(2018).
23. Wang, J., Li, Z., Zhang, S., Yan, S., Cao, B., Wang, Z. and Fu, Y., “Enhanced NH3 Gas-sensing Performance of Silica Modified CeO2 Nanostructure Based Sensors,” Sensors and Actuators B:Chemical, 255, 862-870(2018).
24. Zhao, X., Xue, Y., Yan, C., Huang, Y., Lu, Z., Wang, Z., Zhang,L. and Guo, C., “Promoted Activity of Porous Silica Coated Ni/CeO2ZrO2 Catalyst for Steam Reforming of Acetic Acid,” International Journal of Hydrogen Energy, 42(34), 21677-21685(2017).
25. Roh, H., Potdar, H. and Jun, K., “Carbon Dioxide Reforming of Methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 Catalysts,” Catalysis Today, 93-95, 39-44(2004).
26. Zhang, J., Xu, H., Jin, X., Ge, Q. and Li, W., “Characterizations and Activities of the Nano-sized Ni/Al2O3 and Ni/La–Al2O3 Catalysts for NH3 Decomposition,” Applied Catalysis A: General,290(12), 87-96(2005).
27. Jiménez-González, C., Boukha, Z., Rivas, B. D., González-Velasco, J. R., Gutiérrez-Ortiz, J. I. and López-Fonseca, R., “Behavior
of Coprecipitated NiAl2O4/Al2O3 Catalysts for Low-Temperature Methane Steam Reforming,” Energy & Fuels, 28(11), 7109-7121(2014).
28. Zheng, W., Zhang, J., Ge, Q., Xu, H. and Li, W., “Effects of CeO2 Addition on Ni/Al2O3 Catalysts for the Reaction of Ammonia Decomposition to Hydrogen,” Applied Catalysis B: Environmental 80(1-2), 98-105(2008).
29. Alothman, Z., “A Review: Fundamental Aspects of Silicate Mesoporous Materials,” Materials, 5(12), 2874-2902(2012).
30. Marinho, A. L., Rabelo-Neto, R. C., Epron, F., Bion, N., Toniolo, F.S. and Norhonha, F. B, “Embedded Ni Nanoparticles in CeZrO2 as Stable Catalyst for Dry Reforming of Methane,” Applied Catalysis B: Environmental, 268, 118387-118404(2020).
31. Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M. and Wang, Y., “Enhanced Activity of CeO2–ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure,” Energy & Fuels, 30(1), 638-647(2015)