Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 10, 2023
Revised September 9, 2023
Accepted September 9, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰
Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector
Abstract
세계 각국은 지구온난화로 인한 피해가 증가함에 따라 화석연료를 대신해 탄소배출 없이 지속 가능하게 이용할 수
있는 새로운 에너지 자원들을 찾기 위하여 노력하고 있다. 전세계적으로 4차 산업이 고도화되며 전력수요가 급증했고,
상승하는 수요를 충족함과 동시에 온실가스 배출을 줄이기 위해 탄소비중이 적거나 없는 에너지원을 이용해 안정적인
전력수급계통을 확보하려는 움직임이 커지고 있다. 본 총설에서는 해외 탄소중립 시나리오와 화력발전 잔존여부에 따
라 2가지 시나리오인 혁신, 안전으로 분류하여 정부의 탄소저감 목표를 비교 및 분석하였다. 또한, 국내 시나리오의 경
우10차 전력수급기본계획의 전력수요 전망 및 온실가스 배출 현황을 연계하여 이를 토대로 탄소저감의 주축이 되는
에너지 분야인 전환, 수소, 수송, 탄소포집 및 활용 부문에서의 핵심 기술 동향 및 정부 주도의 정책흐름을 정리하여
탄소중립기술의 현황을 기술했다. 또한, 해외 시나리오 분석에서 시사되었던 에너지 분야의 주요 변화를 반영하여 국
내 탄소저감 전략의 방향을 제시하였다.
Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to
the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale,
there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy
sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions.
In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted.
Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be
categorized into two types: "Rapid" and "Safety”. For the domestic scenario, the projected power demand and current
greenhouse gas emissions in alignment with “The 10th Basic Plan for Electricity Supply and Demand” was examined.
Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the
energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS)
was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the
central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the
energy sector which are highlighted in international scenario analyses.
References
2. “2050 carbon neutral scenario,” The government of Republic of
Korea(2021).
3. Jang, N., Cho, I., Jeon, H. and Koo, J., “Optimization of the Wood
Pellet Supply During the Continued Increase of the Renewable
Energy’s Proportion in the Energy Portfolio,” Korean Journal of
Chemical Engineering, 39(8), 2028(2022).
4. https://yearbook.enerdata.co.kr.
5. Ling, J. L. J., Oh, S. S., Park, H. J. and Lee, S. H., “Process Simulation
and Economic Evaluation of a Biomass Oxygen Fuel Circulating
Fluidized Bed Combustor with an Indirect Supercritical
Carbon Dioxide Cycle,” Renew. Sustain. Energy Rev., 182, 113380
(2023).
6. “The 10th basic plan for electricity supply and demand,” Korea
Ministry of Trade, Industry and Energy(2023).
7. Go, E. S., Kim, B.-S., Ling, J. L. J., Oh, S. S., Park, H. J. and
Lee, S. H., “In-situ Desulfurization Using Porous Ca-based Materials
for the Oxy-cfb Process: A Computational Study,” Environ.
Res., 225, 115582(2023).
8. https://www.mofa.go.kr.
9. Jang, M. J., Lee, J. Y., Lee, H. J. and Ahn, Y. H., “A Study on
Ghg Emission and Emission Intensity Pathways in the Power
Sector of Korea by the 2050 Carbon Neutrality Scenarios,” Journal
of Climate Change Reserch, 13(6), 843(2022).
10. Cheon, Y., “Review of Global Carbon Neutral Strategies and
Technologies,” J. Korean Soc. Min. Energy Res. Eng., 59(1), 99
(2022).
11. Kong, J. and Cho, S., “Towards Net-zero Emissions: Energy
System Integration and Policy Direction for New and Renewable
Energy,” J. Korean Soc. Min. Energy Res. Eng., 58(3), 258(2021).
12. “International energy outlook 2017,” EIA(2017).
13. “Energy perspectives,” Equinor(2018).
14. “World energy outlook 2018,” IEA(2018).
15. “IEEJ outlook 2019,” IEEJ(2019).
16. “2018 opec world oil outlook,” OPEC(2017).
17. “Energy outlook 2022,” British Petroleum(2022).
18. Liu, H., Were, P., Li, Q., Gou, Y. and Hou, Z., “Worldwide Status
of Ccus Technologies and Their Development and Challenges in
China,” Geofluids, 2017(2017).
19. Lee, Y. H. and Sung, T. H., “Economy Analysis and Optimized
Capacity Evaluation of Photovoltaic Related Energy Storage System,”
J. Korean Soc. Ind. Converg., 25(2), 209(2022).
20. Donghyeok Son, Lim, W.-G. and Lee, J., “A Short Review of the
Recent Developments in Functional Separators for Lithium-sulfur
Batteries,” Korean J. Chem. Eng., 40(3), 473-487(2022).
21. Jester Lih Jie Ling, Won Yang, Han Saem Park, Ha Eun Lee and
Lee, S. H., “A Comparative Review on Advanced Biomass
Oxygen Fuel Combustion Technologies for Carbon Capture and
Storage,” Energy 284, 128566(2023).
22. Mitali, J., Dhinakaran, S. and Mohamad, A. A., “Energy Storage
Systems: A Review,” Energy Storage Saving, 1(3), 166-216(2022).
23. Yu Tack, K., Jung, S., Cha, D. and YooEo, H., “Grid Stabilization
and Optimization System Design and Economic Analysis of
Galapagos Island, Ecuador Using Energy Storage System (ess),”
J. Energy Eng., 31(2), 29(2022).
24. Jeon, W., Kim, J.-Y. and Lee, S., “Establishing an Efficient Lowcarbon
Power System by Reducing Curtailment of Renewable
Energy Using Ess- the Case of Jeju Island in 2025,” Journal of
Climate Change Reserch, 13(1), 1(2022).
25. Ko, Y.-S., “A Study on the Application Cases Analysis of Ess
(energy storage system) to Electric Power System,” Journal of
the Korea Institute of Electronic Communication Sciences,
11(1), 53-58(2016).
26. Ali, D. M. M., “Hydrogen Energy Storage,” Energy Storage
Devices, InTechOpen(2019).
27. Park, E. S., Jung, Y. B. and Oh, S. W., “Carbon Neutrality and
Underground Hydrogen Storage,” J. Korean Soc. Min. Energy
Res. Eng., 59(5), 462(2022).
28. Park, S., Lee, D. W., Choi, B. B. and Yoo, S. J., “Current Progress
of Electrocatalysts for Anion Exchange Membrane Fuel
Cells,” Korean Journal of Chemical Engineering, 40, 1549(2023).
29. Hermesmann, M. and Müller, T., “Green, Turquoise, Blue, or
Grey? Environmentally Friendly Hydrogen Production in Transforming
Energy Systems,” Prog. Energy Comb. Sci., 90, 100996
(2022).
30. Kim, J. H., Park, D. K., Kim, J. H., Kim, H. J., Kim, H. S.,
Kang, S. H. and Ryu, J. H., “Trend of CO2 Free H2 Production
Technology for Carbon Neutrality,” J. Energy Climate Change,
16(2), 103(2021).
31. Korányi, T. I., Németh, M., Beck, A. and Horváth, A., “Recent
Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid
Carbon Production,” Energies, 15(17), 6342(2022).
32. Schalenbach, M., Zeradjanin, A. R., Kasian, O., Cherevko, S.
and Mayrhofer, K. J., “A Perspective on Low-temperature Water
Electrolysis–challenges in Alkaline and Acidic Technology,” Inter.
J. Elec. Soc., 13(2), 1173(2018).
33. Xu, Y. and Zhang, B., “Recent Advances in Electrochemical
Hydrogen Production from Water Assisted by Alternative Oxidation
Reactions,” ChemElectroChem, 6(13), 3214(2019).
34. Ryi, S. K., Han, J. Y., Kim, C. H., Lim, H. K. and Jung, H. Y.,
“Technical Trends of Hydrogen Production,” Clean Technol., 23(2),
121(2017).
35. Shih, A. J., Monteiro, M. C., Dattila, F., Pavesi, D., Philips, M.,
da Silva, A. H., Vos, R. E., Ojha, K., Park, S. and van der Heijden,
O., “Water Electrolysis,” Nat. Rev. Methods Primers, 2(1),
84(2022).
36. “Hydrogen economy roadmap of korea,” The government of
Republic of Korea(2019).
37. http://www.motie.go.kr.
38. Choi, J. H. and Choi, J. Y., “Research Status of Hydrogen Fuel
Cell System Based on Hydrogen Electric Vehicle,” Journal of
Energy Engineering, 29(4), 26(2020).
39. Galanido, R. J., Sebastian, L. J., Asante, D. O., Kim, D. S., Chun,
N.-J. and Cho, J., “Fuel Filling Time Estimation for Hydrogenpowered
Fuel Cell Electric Vehicle at Different Initial Conditions
Using Dynamic Simulation,” Korean J. Chem. Eng., 39(4), 853
(2022).
40. Tanç, B., Arat, H. T., Baltacıoğlu, E. and Aydın, K., “Overview
of the Next Quarter Century Vision of Hydrogen Fuel Cell Electric
Vehicles,” Inter. J. Hydrog. Energy, 44(20), 10120(2019).
41. Cho, M. and Koo, Y. D., “Advanced Technologies for the Commercialization
of Hydrogen Fuel Cell Electric Vehicle,” Journal
of Energy Engineering, 23(3), 132(2014).
42. Ryu, H. Y., Kim, B. I., Song, M. S., Kim, H. J., Lee, D. S., Lee,
S. Y., Shin, J. M., Yoo, Y., Kim, S. H. and Lee, H. J., “Optimization
of Hydrogen Refueling Stations Deployment and Supply
Chain Networks: Current Status and Research Suggestions,” J.
Korean Ins. Ind. Eng., 48(2), 211(2022).
43. Park, C., Lim, S., Shin, J. and Lee, C.-Y., “How Much Hydrogen
Should be Supplied in the Transportation Market? Focusing
on Hydrogen Fuel Cell Vehicle Demand in South Korea: Hydrogen
Demand and Fuel Cell Vehicles in South Korea,” Technol. Forecasting
Social Change, 181, 121750(2022).
44. https://www.hydrogen.energy.gov/pdfs/review20/h2000_pivovar_
2020_p.pdf.
45. Lee, D. S., Park, J. S. and Sim, Y. S., “A Study on the Construction
of Fuel Cell Electric Vehicle and Hydrogen Charging Station
Supply Activation (mainly in gyeongsangbuk-do),” J. Korean Soc.
Environ. Eng., 44(12), 560(2022).
46. http://www.motie.go.kr.
47. http://www.molit.go.kr.
48. Kim, H. M. and Nah, I. W., “Brief Review on Carbon Dioxide
Capture and Utilization Technology,” Korean J. Chem. Eng., 57(5),
589(2019).
49. Park, H. J., Oh, S. S., Olanrewaju, O. N., Ling, J. L. J., Jeong, C.
S., Park, H. S. and Lee, S. H., “Recent Development of Thermochemical
Conversion Processes with Fluidized Bed Technologies,”
Korean J. Chem. Eng., 61(1), 8(2023).
50. Seo, S. B., Ahn, H., Go, E. S., Ling, L. J. J., Siambun, N. J.,Park, Y.-K. and Lee, S. H., “Evaluation of the Solar Thermal
Storage of Fluidized Bed Materials for Hybrid Solar Thermochemical
Processes,” Biomass Convers. Biorefin., 1(2022).
51. Koh, M. H., “CO2 Capture, Utilization, and Storage (ccus) Policy
Trends in the European Union (eu) and Major European Countries,”
Pub. Land Law Rev., 463(2022).
52. Hawthorne, C., Trossmann, M., Cifre, P. G., Schuster, A. and
Scheffknecht, G., “Simulation of the Carbonate Looping Power
Cycle,” Energy Procedia, 1(1), 1387(2009).
53. Anthony, E., “Ca Looping Technology: Current Status, Developments
and Future Directions,” Greenhouse Gases 1(1), 36(2011).
54. Dieter, H., Bidwe, A. R., Varela-Duelli, G., Charitos, A., Hawthorne,
C. and Scheffknecht, G., “Development of the Calcium
Looping CO2 Capture Technology from Lab to Pilot Scale at Ifk,
University of Stuttgart,” FUEL, 127, 23(2014).
55. Abanades, J. C., Grasa, G., Alonso, M., Rodriguez, N., Anthony,
E. J. and Romeo, L. M., “Cost Structure of a Postcombustion CO2
Capture System Using Cao,” Environ Sci Technol, 41(15), 5523
(2007).
56. Poboss, N., Schuster, A. and Scheffknecht, G., Machbarkeitsstudie
für das carbonate-looping-verfahren zur CO2-abscheidung aus
kraftwerksabgasen, Univ., Inst. f. Verfahrenstechnik u. Dampfkesselwesen
(IVD) (2008).
57. Romeo, L. M., Lara, Y., Lisbona, P. and Martínez, A., “Economical
Assessment of Competitive Enhanced Limestones for CO2 Capture
Cycles in Power Plants,” Fuel Proc. Technol., 90(6), 803(2009).
58. Han, R., Wang, Y., Xing, S., Pang, C., Hao, Y., Song, C. and Liu,
Q., “Progress in Reducing Calcination Reaction Temperature of
Calcium-looping CO2 Capture Technology: A Critical Review,”
Chem. Eng. J., 450, 137952(2022).
59. Dave, N., Do, T., Palfreyman, D., Feron, P., Xu, S., Gao, S. and
Liu, L., “Post-combustion Capture of CO2 from Coal-fired Power
Plants in China and Australia: An Experience Based Cost Comparison,”
Energy Procedia, 4, 1869(2011).
60. Wang, W. J., Scudiero, L. and Ha, S., “Recent Progress in Electrochemical
Reduction of CO2 Into Formate and C2 Compounds,”
Korean J. Chem. Eng., 39(3), 461(2022).
61. Ystad, P. M., Bolland, O. and Hillestad, M., “Ngcc and Hardcoal
Power Plant with CO2 Capture Based on Absorption,”
Energy Procedia, 23, 33-44(2012).
62. Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J. and
Fennell, P. S., “The Calcium Looping Cycle for CO2 Capture from
Power Generation, Cement Manufacture and Hydrogen Production,”
Chem. Eng. Res. Des., 89(6), 836(2011).
63. Kwon, Y. K., “Current Status of Site Screening and Selection for
Large-scale CO2 Storage Formations and Future Plan for the
Large-scale Ccs Projet in Korea,” JECC(2019).
64. Kim, D. R., “A Study on the Current Status of Ccus-related Legislation
and Improvement Plan in Korea,” Law Review, 22(4),
43(2022).