ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 11, 2023
Revised September 4, 2023
Accepted September 4, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

지속가능한 미래를 위한 폐플라스틱의 촉매 업사이클링 연구 동향

Advancing Towards a Sustainable Future: Recent Trends in Catalytic Upcycling of Waste Plastics

서울과학기술대학교
Seoul National University of Science and Technology
Insoo@seoultech.ac.kr
Korean Chemical Engineering Research, November 2023, 61(4), 505-516(12), 10.9713/kcer.2023.61.4.505 Epub 1 November 2023
downloadDownload PDF

Abstract

플라스틱은 가공과 처리가 간단하여 매년 생산량이 증가하고 있으며 이에 따라 플라스틱 폐기물의 양 또한 매년 증

가하고 있다. 플라스틱 폐기물 문제를 해결하기 위하여 촉매를 활용한 업사이클링 공정은 유망한 해결책으로 제시되

고 있다. 다양한 금속(Ru, Pt 등) 및 지지체(TiO2, CeO2 등)가 폴리 올레핀계 플라스틱의 화학적 재활용에 적용되었다.

입자 크기를 조절하고, 지지체의 특성 및 이종 금속을 도입하여 액체 연료의 선택도를 향상시키고 메탄 생성 양을 줄

이려는 시도가 있었다. 한편으로는 값비싼 귀금속의 양을 줄임으로써 최적의 촉매를 찾기 위한 연구를 진행하였다. 본

논문에서는 이러한 hydrogenolysis 반응 및 hydrocracking 반응에서 경제성을 높이기 위하여 어떠한 시도들이 있었는지

살펴보고자 한다. 이러한 관점에서 촉매 업사이클링 공정을 통해 플라스틱 폐기물 문제를 해결할 가능성을 제시하고

자 한다.

Plastic's ease of processing drives its growing production, resulting in a surge of plastic waste. Addressing

this issue, catalytic upcycling emerges as a promising remedy. Various metals (Ru, Pt, etc.) and supports (TiO2, CeO2,

etc.) have been employed for the chemical recycling of polyolefin plastics. Strategies to enhance liquid fuel selectivity and

minimize methane include manipulating particle size, introducing heterogeneous metals, and tuning support characteristics.

Simultaneously, endeavors to optimize catalysts by reducing precious metal usage were pursued. This study explores

enhancing economic viability in hydrogenolysis and hydrocracking reactions, underscoring the potential of catalystdriven

upcycling to tackle plastic waste.

References

1. Chen, X., Wang, Y. and Zhang, L., “Recent Progress in the
Chemical Upcycling of Plastic Wastes,” ChemSusChem, 19(14),
4137-4151(2021).
2. Ellen MacArthur, F., “The New Plastics Economy: Rethinking
the Future of Plastics & Catalysing Action,” Ellen MacArthur
Foundation, 68-68(2017).
3. Jones, H., Saffar, F., Koutsos, V. and Ray, D., “Polyolefins and
Polyethylene Terephthalate Package Wastes: Recycling and Use
in Composites,” Energies, 21(14), 1-43(2021).
4. Geyer, R., Production, use, and fate of synthetic polymers, Elsevier
Inc., 2020.
5. Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J.
and Leonard, G. H., “The United States' Contribution of Plastic
Waste to Land and Ocean,” Science Advances, 44(6), 1-8(2020).
6. Serrano, D. P., Aguado, J. and Escola, J. M., “Developing Advanced
Catalysts for the Conversion of Polyolefinic Waste Plastics Into
Fuels and Chemicals,” ACS Catalysis, 9(2), 1924-1941(2012).
7. Kunwar, B., Cheng, H. N., Chandrashekaran, S. R. and Sharma,
B. K., “Plastics to Fuel: a Review,” Renewable and Sustainable
Energy Reviews, 54, 421-428(2016).
8. Vilaplana, F. and Karlsson, S., “Quality Concepts for the Improved
Use of Recycled Polymeric Materials: A Review,” Macromolecular
Materials and Engineering, 4(293), 274-297(2008).
9. Jung, S. and Ro, I., “Strategic Use of Thermo-chemical Processes
for Plastic Waste Valorization,” Korean Journal of Chemical Engineering,
1(40), 1-13(2023).
10. Nakaji, Y., Tamura, M., Miyaoka, S., Kumagai, S., Tanji, M.,
Nakagawa, Y., Yoshioka, T. and Tomishige, K., “Low-temperature
Catalytic Upgrading of Waste Polyolefinic Plastics Into Liquid
Fuels and Waxes,” Applied Catalysis B: Environmental, November
2020(285), 119805-119805(2021).
11. Rorrer, J. E., Beckham, G. T. and Román-Leshkov, Y., “Conversion
of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts
under Mild Conditions,” JACS Au, 1(1), 8-12(2021).
12. Kots, P. A., Liu, S., Vance, B. C., Wang, C., Sheehan, J. D. and
Vlachos, D. G., “Polypropylene Plastic Waste Conversion to
Lubricants over Ru/TiO2 Catalysts,” ACS Catalysis, 11(13), 8104-
8115(2021).
13. Tamura, M., Miyaoka, S., Nakaji, Y., Tanji, M., Kumagai, S.,
Nakagawa, Y., Yoshioka, T. and Tomishige, K., “Structure-activity
Relationship in Hydrogenolysis of Polyolefins over Ru/support
Catalysts,” Applied Catalysis B: Environmental, August(318),
121870-121870(2022).
14. Kim, T., Nguyen-Phu, H., Kwon, T., Kang, K. H. and Ro, I.,
“Investigating the Impact of TiO(2) Crystalline Phases on Catalytic
Properties of Ru/TiO(2) for Hydrogenolysis of Polyethylene
Plastic Waste,” Environ Pollut, Pt 2(331), 121876(2023).
15. Wang, C., Yu, K., Sheludko, B., Xie, T., Kots, P. A., Vance, B.
C., Kumar, P., Stach, E. A., Zheng, W. and Vlachos, D. G., “A
General Strategy and a Consolidated Mechanism for Low-methane
Hydrogenolysis of Polyethylene over Ruthenium,” Applied Catalysis
B: Environmental, 319, 121899(2022).
16. Chen, L., Meyer, L. C., Kovarik, L., Meira, D., Pereira-Hernandez,
X. I., Shi, H., Khivantsev, K., Gutiérrez, O. Y. and Szanyi,
J., “Disordered, Sub-Nanometer Ru Structures on CeO2 are Highly
Efficient and Selective Catalysts in Polymer Upcycling by
Hydrogenolysis,” ACS Catalysis, 12(8), 4618-4627(2022).
17. Chu, M., Wang, X., Wang, X., Lou, X., Zhang, C., Cao, M.,
Wang, L., Li, Y., Liu, S., Sham, T. K., Zhang, Q. and Chen, J.,
“Site-selective Polyolefin Hydrogenolysis on Atomic Ru for
Methanation Suppression and Liquid Fuel Production,” Research
(Wash D C), 6, 0032(2023).
18. Martín, A. J., Mondelli, C., Jaydev, S. D. and Pérez-Ramírez, J.,
“Catalytic Processing of Plastic Waste on the Rise,” Chem, 6(7),
1487-1533(2021).
19. Oecd, Global Plastics Outlook, 2022.
20. PlasticsEurope, “Plastics – the Facts 2022,” (2022).
21. Ministry of Environment, “2021 Korea Waste Generation and Disposal
Status,” (2022).
22. Geyer, R., Jambeck, J. R. and Law, K. L., “Production, use, and Fate
of All Plastics ever Made,” Science Advances, 7(3), 25-29(2017).
23. Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.
H., Abu-Omar, M., Scott, S. L. and Suh, S., “Degradation Rates
of Plastics in the Environment,” ACS Sustainable Chemistry and
Engineering, 9(8), 3494-3511(2020).
24. Chu, M., Liu, Y., Lou, X., Zhang, Q. and Chen, J., “Rational Design
of Chemical Catalysis for Plastic Recycling,” ACS Catalysis,
8(12), 4659-4679(2022).
25. Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes,
F. and Dudas, S. E., “Human Consumption of Microplastics,”
Environmental Science and Technology, 12(53), 7068-7074(2019).
26. Schyns, Z. O. G. and Shaver, M. P., “Mechanical Recycling of
Packaging Plastics: A Review,” Macromolecular Rapid Communications,
3(42), 1-27(2021).
27. Vollmer, I., Jenks, M. J. F., Roelands, M. C. P., White, R. J., van
Harmelen, T., de Wild, P., van der Laan, G. P., Meirer, F., Keurentjes,
J. T. F. and Weckhuysen, B. M., “Beyond Mechanical Recycling:
Giving New Life to Plastic Waste,” Angewandte Chemie - International
Edition, 36(59), 15402-15423(2020).
28. Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A. and Aroua,
M. K., “A Review on Pyrolysis of Plastic Wastes,” Energy Conversion
and Management, 115, 308-326(2016).
29. Munir, D., Irfan, M. F. and Usman, M. R., “Hydrocracking of
Virgin and Waste Plastics: A Detailed Review,” Renewable and
Sustainable Energy Reviews, 90, 490-515(2018).
30. Pichler, C. M., Bhattacharjee, S., Rahaman, M., Uekert, T. and
Reisner, E., “Conversion of Polyethylene Waste into Gaseous
Hydrocarbons via Integrated Tandem Chemical-Photo/Electrocatalytic
Processes,” ACS Catal, 15(11), 9159-9167(2021).
31. Rorrer, J. E., Ebrahim, A. M., Questell-Santiago, Y., Zhu, J.,
Troyano-Valls, C., Asundi, A. S., Brenner, A. E., Bare, S. R., Tassone,
C. J., Beckham, G. T. and Román-Leshkov, Y., “Role of
Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking
of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons,”
ACS Catalysis, 12(22), 13969-13979(2022).
32. Rorrer, J. E., Troyano-Valls, C., Beckham, G. T. and Román-Leshkov,
Y., “Hydrogenolysis of Polypropylene and Mixed Polyolefin
Plastic Waste over Ru/C to Produce Liquid Alkanes,” ACS Sustainable
Chemistry and Engineering, 35(9), 11661-11666(2021).
33. Lovás, P., Hudec, P., Jambor, B., Hájeková, E. and Horňáček, M.,
“Catalytic Cracking of Heavy Fractions from the Pyrolysis of
Waste HDPE and PP,” Fuel, 203, 244-252(2017).
34. Rejman, S., Vollmer, I., Werny, M. J., Vogt, E. T. C., Meirer, F.
and Weckhuysen, B. M., “Transport Limitations in Polyolefin
Cracking at the Single Catalyst Particle Level,” Chemical Science,
(2023).
35. Wang, C., Xie, T., Kots, P. A., Vance, B. C., Yu, K., Kumar, P.,
Fu, J., Liu, S., Tsilomelekis, G., Stach, E. A., Zheng, W. and Vlachos,
D. G., “Polyethylene Hydrogenolysis at Mild Conditions
over Ruthenium on Tungstated Zirconia,” Journal of the American
Chemical Society, 9(1), 1422-1434(2021).
36. Celik, G., Kennedy, R. M., Hackler, R. A., Ferrandon, M., Tennakoon,
A., Patnaik, S., Lapointe, A. M., Ammal, S. C., Heyden,
A., Perras, F. A., Pruski, M., Scott, S. L., Poeppelmeier, K. R.,
Sadow, A. D. and Delferro, M., “Upcycling Single-Use Polyethylene
into High-Quality Liquid Products,” ACS Central Science,
11(5), 1795-1803(2019).
37. Wu, X., Tennakoon, A., Yappert, R., Esveld, M., Ferrandon, M.
S., Hackler, R. A., LaPointe, A. M., Heyden, A., Delferro, M., Peters,
B., Sadow, A. D. and Huang, W., “Size-Controlled Nanoparticles
Embedded in a Mesoporous Architecture Leading to Efficient
and Selective Hydrogenolysis of Polyolefins,” Journal of
the American Chemical Society, (2022).
38. Sun, M., Zhu, L., Liu, W., Zhao, X., Zhang, Y., Luo, H., Miao,
G., Li, S., Yin, S. and Kong, L., “Efficient Upgrading of Polyolefin
Plastics into C5-C12 Gasoline Alkanes over a Pt/W/Beta
Catalyst,” Sustainable Energy and Fuels, 2(6), 271-275(2022).
39. Liu, S., Kots, P. A., Vance, B. C., Danielson, A. and Vlachos, D.
G., “Plastic Waste to Fuels by Hydrocracking at Mild Conditions,”
Science Advances, 17(7), 1-10(2021).
40. Utami, M., Wijaya, K. and Trisunaryanti, W., “Pt-promoted Sulfated
Zirconia as Catalyst for Hydrocracking of LDPE Plastic
Waste into Liquid Fuels,” Materials Chemistry and Physics, 213,
548-555(2018).
41. Vance, B. C., Kots, P. A., Wang, C., Hinton, Z. R., Quinn, C. M.,
Epps, T. H., Korley, L. S. T. J. and Vlachos, D. G., “Single Pot
Catalyst Strategy to Branched Products via Adhesive Isomerization
and Hydrocracking of Polyethylene over Platinum Tungstated Zirconia,”
Applied Catalysis B: Environmental, 299, 120483(2021).
42. Kim, M. Y., Kim, J.-K., Lee, M.-E., Lee, S. and Choi, M., “Maximizing
Biojet Fuel Production from Triglyceride: Importance of
the Hydrocracking Catalyst and Separate Deoxygenation/Hydrocracking
Steps,” ACS Catalysis, 9(7), 6256-6267(2017).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로