ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 24, 2023
Revised August 22, 2023
Accepted August 29, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

상태방정식을 이용한 포화상태 수소의 열역학적 물성 모델링

Modeling of Thermodynamic Properties of Saturated state Hydrogen using Equation of State

1 2
Korean Chemical Engineering Research, November 2023, 61(4), 550-554(5), 10.9713/kcer.2023.61.4.550 Epub 1 November 2024

Abstract

탄화수소기반의 화석연료 에너지원은 이산화탄소 배출로 인한 지구온난화 문제로 지속적인 이용 및 확장에 제한이

있다. 수소는 전통적인 화석연료에 대한 유망한 대안으로 여겨지고 있다. 수소의 안정적인 장기저장을 위해서 극저온

인 포화상태에서 수소의 열역학적 물성에 대한 예측이 요구된다. 따라서 본 연구에서는 비교적 간단한 관계식을 보이

는 3차 상태방정식들을 이용하여 포화상태의 열역학적 물성들(포화증기압, 액체 및 기체의 밀도, 엔탈피 및 엔트로피)

을 모사하였다. 포화상태 수소에 대한 여러가지 열역학적 물성들을 비교한 결과 3 종류(Redlich-Kwong (RK), Soave-

Redlich-Kwong (SRK), Peng-Robinson (PR))의 상태방정식 중 SRK 모델이 비교적 정확한 예측결과를 보였다.

Fossil energy sources are limited in their sustainable use and expansion due to global warming caused by

carbon dioxide emissions. Hydrogen is considered as a promising alternative to traditional fossil fuels. To ensure the

stable long-term storage, it is necessary to accurately predict its thermodynamic properties at cryogenic temperatures.

Therefore, this study aimed to investigate thermodynamic properties, such as saturated vapor pressure and density,

enthalpy, and entropy of liquid and gas, using cubic equations of state that demonstrate relatively simple relationships.

Among the three types of equations of state (Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Peng-Robinson

(PR)), the SRK model exhibited relatively accurate prediction results for various physical properties.

References

1. Arutyunov, V. S., “Hydrogen Energy: Significance, Sources,
Problems, and Prospects (A Review),” Petroleum Chemistry,
62(6), 583-593(2022).
2. Subramani, V., Basile, A. and Veziroglu, T. N., Compendium of
Hydrogen Energy: Hydrogen Production and Purification.,
Woodhead Publishing(2015).
3. Morales-Ospino, R., Celzard, A. and Fierro, V., “Strategies to
Recover and Minimize Boil-off Losses During Liquid Hydrogen
Storage,” Renewable and Sustainable Energy Reviews, 182,
113360(2023).
4. Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood,
M. and Azad, A. K., “Hydrogen Production, Storage, Transportation
and Key Challenges with Applications: A Review,” Energy
Conversion and Management, 165, 602-627(2018).
5. Abdin, Z., Zafaranloo, A. Rafiee, A., Merida, W., Lipinski, W.
and Khalilpour, K. R., “Hydrogen as an Energy Vector,” Renewable
and Sustainable Energy Reviews, 120, 109620(2020).
6. Ustolin, F., Paltrinieri, N. and Berto, F., “Loss of Integrity of
Hydrogen Technologies: A Critical Review,” International Journal
of Hydrogen Energy, 45(43), 23809-23840(2020).
7. Khurana, T. K., Prasad, B. V. S. S. S., Ramamurthi, K. and Murthy,
S., “Thermal Stratification in Ribbed Liquid Hydrogen Storage
Tanks,” International Journal of Hydrogen Energy, 31(15),
2299-2309(2006).
8. Smith, J. R., Gkantonas, S. and Mastorakos, E., “Modelling of
Boil-off and Sloshing Relevant to Future Liquid Hydrogen Carriers,”
Energies, 15(6), 2046(2022).
9. Park, B. H., “Calculation and Comparison of Thermodynamic
Properties of Hydrogen Using Equations of State for Compressed
Hydrogen Storage,” Transactions of the Korean Hydrogen and
New Energy Society, 31(2), 184-193(2020).
10. Redlich, O. and Kwong, J. N. S., “On the Thermodynamics of
Solutions. V. An Equation of State. Fugacities of Gaseous Solutions,”
Chemical Reviews, 44(1), 233-244(1949).
11. Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong
Equation of State,” Chemical Engineering Science, 27(6), 1197-
1203(1972).
12. Peng, D.-Y. and Robinson, D. B., “A New Two-Constant Equation
of State,” Industrial & Engineering Chemistry Fundamentals,
15(1), 59-64(1976).
13. Nasrifar, K., “Comparative Study of Eleven Equations of State
in Predicting the Thermodynamic Properties of Hydrogen,” International
Journal of Hydrogen Energy, 35(8), 3802-3811(2010).
14. Mathias, P. M. and Copeman, T. W., “Extension of the Peng-
Robinson Equation of State to Complex Mixtures: Evaluation of
the Various Forms of the Local Composition Concept,” Fluid
Phase Equilibria, 13, 91-108(1983).
15. Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V. and Tassios,
D. P., “An Equation of State for Associating Fluids,” Industrial
& Engineering Chemistry Research, 35(11), 4310-4318(1996).
16. Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M.,
“SAFT: Equation-of-state Solution Model for Associating Fluids,”
Fluid Phase Equilibria, 52, 31-38(1989).
17. Smith, J. M., Van Ness, H. C., Abbott, M. M. and Swihart, M.
T., Introduction to Chemical Engineering Thermodynamics. 9th
ed., McGraw-Hill Singapore(2022).
18. Leachman, J. W., Jacobsen, R. T., Penoncello, S. G. and Lemmon,
E. W., “Fundamental Equations of State for Parahydrogen,
Normal Hydrogen, and Orthohydrogen,” J. Phys. Chem. Ref.
Data, 38(3), 721-748(2009).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로