ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 10, 2023
Revised September 25, 2023
Accepted September 25, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

탄소나노튜브로 개질된 탄소종이 기반 젖산산화효소 - 카탈레이즈 전극 제작 및 특성 분석

Fabrication and Characterization of Carbon Nanotube-modified Carbon Paper-based Lactate Oxidase-catalase Electrode

경상국립대학교 화학공학과 및 그린에너지 연구소 1경상국립대학교 나노신소재융합공학과 2경상국립대학교 반도체공학과 3단국대학교
Department of Chemical Engineering and RIGET, Gyeongsang National University 1Department of Materials Engineering and Convergence Technology, Gyeongsang National University 2Department of Semiconductor Engineering, Gyeongsang National University 3Dankook University
Korean Chemical Engineering Research, November 2023, 61(4), 576-583(8), 10.9713/kcer.2023.61.4.576 Epub 1 November 2023
downloadDownload PDF

Abstract

본 연구에서는 전극의 전기 전도도 증대와 젖산 산화반응의 부산물인 과산화수소 생성 완화가 젖산 산화효소 전극

성능에 미치는 영향을 조사하였다. 유연성 있는 탄소종이 표면을 단일벽 탄소나노튜브로 개질하여 전극의 전기 전도

도를 향상시켰다. 카탈라아제를 도입하여 젖산 산화반응에서 발생하는 과산화수소를 제거하였다. 젖산 산화효소와 카

탈라아제가 동시에 고정화된 탄소종이 전극은 젖산 산화효소만 고정화된 탄소종이 전극보다 1.7배 많은 전류를 생성

하였다. 단일벽 탄소나노튜브로 개질된 탄소종이 표면에 젖산 산화효소와 카탈라아제가 동시에 고정화된 전극은 171

μA의 전류를 생산하였는데, 이는 탄소종이 표면에 젖산 산화효소만 고정화된 전극이 생산하는 전류보다 2배 높은 값

이다. 최적화된 전극은 젖산 농도가 20 mM까지 선형반응을 보여 센서용 전극으로 사용 가능함을 확인하였다.

This study aimed to investigate the impact of enhancing the electrode conductivity and mitigating the

production of hydrogen peroxide - a by-product arising from lactate oxidation – on the performance of lactate electrodes.

The electrical conductivity of the electrode was improved by modifying the surface of carbon paper with single-walled

carbon nanotubes. Catalase was introduced to effectively eliminate the hydrogen peroxide produced during the lactate

oxidation reaction. The carbon paper electrode, with simultaneous immobilization of both lactate oxidase and catalase,

yielded a current 1.7 times greater than the electrode where only lactate oxidase was immobilized. The electrode in

which lactate oxidase and catalase were co-immobilized on the surface of carbon paper modified with single-walled

carbon nanotubes, produced a current of 171 μA, which was more than twice as much current as the carbon paper with

only lactate oxidase immobilized. The optimized electrode showed a linear response up to lactate concentration of

20 mM, confirming that it can be used as a sensor electrode.

Keywords

References

1. Rathee, K., Dhull, V., Dhull, R., Singh, S., “Biosensors Based on
Electrochemical Lactate Detection: A Comprehensive Review,”
Biochem. Biophys. Rep., 5, 35-54(2016).
2. Madden, J., Vaughan, E., Thompson, M., Riordan, A.O., Galvin,
P., Lacopino, D. and Teixeira, S.R., “Electrochemical Sensor
for Enzymatic Lactate Detection Based on Laser-scribed Graphitic
Carbon Modified with Platinum, Chitosan and Lactate
Oxidase,” Talanta, 246, 123492(2022).
3. Derbyshire, P. J., Barr, H., Davis, F. and Higson, S. P., “Lactate
in Human Sweat: A Critical Review of Research to the Present
Day,” J. Physiol. Sci., 62, 429-440(2012).
4. Chung, M., Fortunato, G. and Radacsi, N., “Wearable Flexible
Sweat Sensors for Healthcare Monitoring; A Review,” J. R. Soc.
Interface, 16, 20190217(2019).
5. Kim, H. H., Yoo, J. and Choi, M. K., “Non-invasive Wearable
Continuous Monitoring Sensors,” Polym. Sci. Technol., 31, 286-
290(2020).
6. Nagamine, K., Mano, T., Nomura, A., Ichimura, Y., Izawa, R.,
Furusawa, H., Matsui, H., Kumaki, D. and Tokito, S., “Noninvasive
Sweat-Lactate Biosensor Employing a Hydrogel-Based
Touch Pad,” Sci. Rep., 9, 10102(2019).
7. He, W., Wang, C., Wang, H., Jian, M., Lu, W., Liang, X., Zhang,
X., Yang, F. and Zhang, Y., “Integrated Textile Sensor Patch for
Real-time and Multiplex Sweat Analysis,” Sci. Adv., 5, eaax0649
(2019).
8. Hoovels, K. V., Xuan, X., Cuartero, M., Gijssel, M., Swaren, M.
and Crespo, G. A., “Can Wearable Sweat Lactate Sensors Contrivute
to Sports Physiology?,” ACS Sens., 6, 3496-3508(2021).
9. Rahman, M. M., Shiddiky, M. J. A., Rahman, M. A. and Shim,
Y.-B., “A Lactate Biosensor Based on Lactate Dehydrogenase/
Nicotinamide Adenine Dinucleotide (Oxidized Form) Immobilized
on A Conducting Polymer/Multiwall Carbon Nanotube
Composite Film,” Anal Biochem., 384, 159-165(2009).
10. Hiraka, K., Tsugawa, W., Asano, R., Yokus, M. A., Ikebukuro, K.,
Daniele, M. A. and Sode, K., “Rational Design of Direct Electron
Transfer Type L-Lactate Dehydrogenase for The Development
of Multiplexed Biosensor,” Biosens. Bioelectron., 176, 112933(2021).
11. Gamero, M., Pariente, F., Lorenzo, E. and Alonso, C., “Nanostructured
Rough Gold Electrodes for the Development of Lactate
Oxidase-Based Biosensors,” Biosens. Bioelectron., 25, 2038-2044
(2010).
12. Choi, H., Yeo, M., Kang, Y., Kim, H. J., Park, S. G., Jang, E.,
Park, S. H., Kim, E. and Kang, S., “Lactate Oxidase/Catalase-
Displaying Nanopaticles Efficiently Consume Lactate in The Tumor
Microenvironment to Effectively Suppress Tumor Growth,” J.
Nanobiotechnol., 21, 5(2023).
13. Andrus, L. P., Unruh, R., Wisniewski, N. A. and McShane, M.
J., “Characterization of Lactate Sensors Based on Lactate Oxidase
and Palladium Benzoporphyrin Immobilized in Hydrogels,”
Biosensors, 5, 398-416(2015).
14. Pichardo, S., Gutierrez-Praena, D., Puerto, M., Sanchez, E., Grilo,
A., Camean, A. M. and Jos, A., “Oxidative Stress Response to
Carboxylic Acid Functionalized Single Wall Carbon Nanotubes
on the Human Intestinal Cell Line Caco-2,” Toxicol In Vitro, 26,
672-677(2012).
15. Heller, A., “Electrical Connection of Enzyme Redox Centers to
Electrodes,” J. Phys. Chem., 96, 3579-3587(1992).
16. Ammam, M. and Fransaer, J., “AC-Electrophoretic Deposition
of Metalloenzymes: Catalase As A Case Study for The Sensitive
and Selective Detection of H2O2,” Sens. Actuators B: Chem.,
160, 1063-1069(2011).
17. Zamocky, M., Regelsberger, G., Jakopitsh, C. and Obinger, C.,
“The Molecular Peculiarities of Catalase-Peroxidases,” FEBS Lett.,
492, 177-182(2001).
18. Quyang, T., Feldman, B. J. and Chen, K., “Stabilized Lactate
Responsive Enzymes, Electrodes and Sensors, and Methods for
Making and Using the Same,” European Patent No. EP 3 307
164 B1(2016).
19. Quyang, T., Feldman, B. J. and Chen, K., “Stabilized Lactate
Responsive Enzymes, Electrodes and Sensors, and Methods for
Making and Using the Same,” U.S. Patent No. US2016/0362716
A1(2016).
20. Koposova, E., Shumilova, G., Ermolenko, Y., Kisner, A., Offenhausser,
A. and Mourzina, Y., “Direct Electrochemistry of cyt C
and Hydrogen Peroxide Biosensing on Oleylamine-And Citrate-
Stabilized Gold Nanostructures,” Sens. Actuators B: Chem., 207,
1045-1052(2015).
21. Voitko, K., Toth, A., Demianenko, E., Dobos, G., Berke, B.,
Bakalinska, O., Grebenyuk, A., Tombacz, E., Kuts, V., Tarasenko,
Y., Kartel, M. and Laszlo, K., “Catalytic Performance of Carbon
Nanotubes in H2O2 Decomposition: Experimental and Quantum
Chemical Study,” J. Colloid Interface Sci., 437, 283-290(2015).
22. Moreno, J., Kasai, K., David, M., Nakanishi, H. and Kasai, H.,
“Hydrogen Peroxide and Adsorption on Fe-Filled Single-Walled
Carbon Nanotubes: A Theoretical Study,” J. Phys.: Condens.
Matter, 21, 064219(2009).
23. Engel, P. S., Billups, W. E., Abmayr Jr, D. W., Tsvaygboym, K.
and Wang, R., “Reaction of Single-Walled Carbon Nanotubes
with Organic Peroxides,” J. Phys. Chem. C, 112, 695-700(2008).
24. Willey, J. M., Sherwood, L. M. and Woolverton, C. J., Prescott,
Harley, and Klein’s Microbiology, 7th ed., McGraw-Hill, New
York, NY(2008).
25. Payne, M. E., Zamarayeva, A., Pister, V. I., Yamamoto, N. A. D.
and Arias, A. C., “Printed, Flexible Lactate Sensors: Design
Considerations Before Performing On-Body Measurements,”
Sci. Rep., 9, 13720(2019).
26. Bhalla, N., Jolly, P., Formisano, N. and Estrela, P., “Introduction
to Biosensors,” Essays Biochem., 60, 1-8(2016).
27. Ibupoto, Z. H., Shah, S. M. U. A., Khun, K. and Willander, M.,
“Electrochemical L-Lactic Acid Sensor Based on Immobilized
ZnO Nanorods with Lactate Oxidase,” Sensors, 12, 2456-2466(2012).
28. Cunha-Silva, H. and Arcos-Martinez, M. J., “Dual Range Lactate
Oxidase-Based Screen Printed Amperometric Biosensor for
Analysis of Lactate in Diversified Samples,” Talanta, 188, 779-
787(2018).
29. Jiang, D., Xu, C., Zhang, Q., Ye, Y., Cai, Y., Li, K., Li, Y., Huang,
X. and Wang, Y., “In-Situ Preparation of Lactate-Sensing Membrane
for The Noninvasive And Wearable Analysis of Sweat,”
Biosens. Bioelectron., 210, 114303(2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로