Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 31, 2023
Revised September 10, 2023
Accepted September 10, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링
First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis
Abstract
촉매를 사용한 전기화학적 암모니아 생산은 주변 온도 및 압력 조건, 환경 친화적인 작동 및 고순도 암모니아 생산을
가능하게 함으로써 전통적인 하버-보쉬 방법을 대체할 대안으로서 가능성이 있다. 본 연구에서는 제1원리 계산을 사용
하여 루테늄 촉매의 표면에서 발생하는 질소 환원 반응에 초점을 맞춘다. 루테늄의 (0001) 및 (1000) 표면에서 질소 환
원에 대한 반응 경로를 모델링하여 반응 구조를 최적화하고 각 단계에 대한 유리한 경로를 예측했다. 각 표면에서의
N2의 흡착 구성은 후속 반응 활동에 상당한 영향을 미쳤으며, 깁스자유에너지 분석은 가장 유리한 질소 환원 구성을
도출하였다. 루테늄의 (0001) 표면에서는 질소 분자가 표면에 수직으로 흡착하는 end-on 형태가 가장 유리한 N2 흡착
에너지가 나타났으며 유사하게, (1000) 표면에서도 end-on 형태가 안정적인 흡착 에너지 값을 보였다. 이어서, distal
및 alternating 구성 모두에서 최적화된 수소 흡착을 통해 NH3의 최종 탈착까지 이론적으로 완전한 반응 경로를 설명했다.
Electrochemical ammonia production using catalysts offers a promising alternative to the conventional
Haber-Bosch process, allowing for ambient temperature and pressure conditions, environmentally friendly operations,
and high-purity ammonia production. In this study, we focus on the nitrogen reduction reactions occurring on the
surfaces of ruthenium catalysts, employing first-principles calculations. By modeling reaction pathways for nitrogen
reduction on the (0001) and (1000) surfaces of ruthenium, we optimized the reaction structures and predicted favorable
pathways for each step. We found that the adsorption configuration of N2 on each surface significantly influenced
subsequent reaction activities. On the (0001) surface of ruthenium, the end-on configuration, where nitrogen molecules
adsorb perpendicularly to the surface, exhibited the most favorable N2 adsorption energy. Similarly, on the (1000)
surface, the end-on configuration showed the most stable adsorption energy values. Subsequently, through optimized
hydrogen adsorption in both distal and alternating configurations, we theoretically elucidated the complete reaction
pathways required for the final desorption of NH3.
References
Insights Into Materials Design,” Science 355, 6321
(2017).
2. Fu, C., et al., “DFT Calculations: A Powerful Tool for Better
Understanding of Electrocatalytic Oxygen Reduction Reactions
on Pt-based Metallic Catalysts,” Computational Materials Science
170, 109202(2019).
3. Chiwata, M., et al., “Oxygen Reduction Reaction Activity of Carbon-
supported Pt-Fe, Pt-Co, and Pt-Ni Alloys with Stabilized Ptskin
Layers,” Electrochemistry 84(3), 133-137(2016).
4. Skulason, E., et al., “A Theoretical Evaluation of Possible Transition
Metal Electro-catalysts for N2 Reduction,” Physical Chemistry
Chemical Physics 14(3), 1235-1245(2012).
5. Schlogl, R., “Catalytic Synthesis of Ammonia-a “never-ending
story,” ? Angew Chem. Int. Ed. Engl., 42(18), 2004-2008(2003).
6. Qin, C., et al., “Proton Exchange Membrane Fuel Cell Reversal:
A Review,” Catalysts 6(12), 197(2016).
7. Chen, S., et al., “Size-controlled Synthesis of Platinum–copper
Hierarchical Trigonal Bipyramid Nanoframes,” Angewandte Chemie
127(1), 110-115(2015).
8. Yao, Y., et al., “Electrochemical Nitrogen Reduction Reaction
on Ruthenium,” ACS Energy Letters 4(6), 1336-1341(2019).
9. Lankiang, S. D., Baranton, S. and Coutanceau, C., “Electrocatalytic
Behaviour Towards Oxygen Reduction Reaction of Carbon-
supported PtxMyAuz (M=Ni, Cu, Co) Binary and Ternary
Catalysts,” Electrochimica Acta 242, 287-299(2017).
10. Kim, S.-H., et al., “Impact of the Dopant-induced Ensemble
Structure of Hetero-double Atom Catalysts in Electrochemical
NH3 Production,” Journal of Materials Chemistry A 10(11), 6216-
6230(2022).
11. Kresse, G. and Furthmüller, J., “Efficient Iterative Schemes Forab
Initiototal-energy Calculations Using a Plane-wave Basis Set,”
Phy. Rev. B, 54, 11169-11186(1996).
12. Perdew, J. P., Burke, K. and Ernzerhof, M., “Generalized Gradient
Approximation Made Simple,” Physical Review Letters 77(18),
3865(1996).
13. Monkhorst, H. J. and Pack, J. D., “Special Points for Brillouinzone
Integrations,” Physical Review B 13(12), 5188(1976).
14. Peterson, A. A., et al., “How Copper Catalyzes the Electroreduction
of Carbon Dioxide Into Hydrocarbon Fuels,” Energy &
Environmental Science 3(9), 1311-1315(2010).
15. Skúlason, E., et al., “Modeling the Electrochemical Hydrogen
Oxidation and Evolution Reactions on the Basis of Density Functional
Theory Calculations,” Journal of Physical Chemistry C
114(42), 18182-18197(2010).
16. Stroppa, A. and Kresse, G., “The Shortcomings of Semi-local
and Hybrid Functionals: What We Can Learn From Surface Science
Studies,” New Journal of Physics 10(6), 063020(2008).17. Zhao, J. and Chen, Z., “Single Mo Atom Supported on Defective
Boron Nitride Monolayer as an Efficient Electrocatalyst for
Nitrogen Fixation: a Computational Study,” Journal of the American
Chemical Society 139(36), 12480-12487(2017).
18. Chen, Z., et al., “Computational Screening of Efficient Singleatom
Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for
Nitrogen Electroreduction,” Small Methods 3(6), 1800368(2019).
19. Ling, C., et al., “A General Two-step Strategy-based Highthroughput
Screening of Single Atom Catalysts for Nitrogen
Fixation,” Small Methods 3(9), 1800376(2019).