Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 4, 2023
Revised December 21, 2023
Accepted December 21, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
잡음이 포함된 측정 자료에 대한 신경망의 DNA 용액 조성비 예측
Prediction of Composition Ratio of DNA Solution from Measurement Data with White Noise Using Neural Network
Abstract
신경망은 심전도 신호, 망막 영상, 지진파 등 잡음이 포함된 자료의 전처리 작업에 활용되고 있다. 그러나, 잡음의
전처리는 전산시간 증가, 원본 신호의 왜곡등의 문제점을 내포하고 있다. 본 연구에서는 잡음의 전처리 없이 측정 자
료를 분석할 수 있는 신경망 구조를 연구하였다. 신경망의 학습 자료로써 잡음이 포함된 DNA 용액의 동역학적 거동을
선정하여, 해당 자료로부터 DNA 용액의 조성비를 예측하고자 하였다. DNA의 동역학 자료에 인위적으로 백색 잡음을
추가하여, 신경망의 예측에 대한 잡음의 영향을 알아보았다. 결과적으로, 잡음의 전처리 없이 O(1)의 신호 대 잡음비
자료로부터 O(0.01)의 오차로 용액의 조성비를 예측할 수 있었다. 이러한 연구 결과는 측정 잡음에 민감하게 영향 받을
수 있는 극미량의 유전병 또는 암세포와 관련된 DNA를 분석을 위한 핵심 인공지능 기술로 활용할 수 있다.
A neural network is utilized for preprocessing of de-noizing in electrocardiogram signals, retinal images, seismic waves, etc. However, the de-noizing process could provoke increase of computational time and distortion of the original signals. In this study, we investigated a neural network architecture to analyze measurement data without additional de-noizing process. From the dynamical behaviors of DNA in aqueous solution, our neural network model aimed to predict the mole fraction of each DNA in the solution. By adding white noise to the dynamics data of DNA artificially, we investigated the effect of the noise to neural network’s predictions. As a result, our model was able to predict the DNA mole fraction with an error of O(0.01) when signal-to-noise ratio was O(1). This work can be applied as a efficient artificial intelligence methodology for analyzing DNA related to genetic disease or cancer cells which would be sensitive to background measuring noise.
References
Learning for Fluid Mechanics,” Annu. Rev. Fluid Mech., 52, 477-
508(2020).
2. Ghavipour, M., Ghavipour, M., Chitsazan, M., Najibi, S. H. and
Ghidary, S. S., “Experimental Study of Natural Gas Hydrates
and a Novel Use of Neural Network to Predict Hydrate Formation
Conditions,” Chemical Engineering Research and Design,
91, 264-273(2013).
3. Landgrebe, M. K. B. and Nkazi, D., “Toward a Robust, Universal
Predictor of Gas Hydrate Equilibria by Means of a Deep
Learning Regression,” ACS Omega, 4, 22399-22417(2019).
4. Poort, J. P., Ramdin, M., van Kranendonk, J. and Vlugt, T. J. H.,
“Solving Vapor-liquid Flash Problems Using Artificial Neural
Networks,” Fluid Phase Equilibria, 490, 39-47(2019).
5. Sun, G. et al., “Vapor-liquid Phase Equilibria Behavior Prediction
of Binary Mixtures Using Machine Learning,” Chemical Engineering
Science, 282, 119358(2023).
6. Hamilton, S. J. and Hauptmann, A., “Deep D-Bar: Real-Time
Electrical Impedance Tomography Imaging With Deep Neural
Networks,” IEEE Transactions on Medical Imaging, 37, 2367-
2377(2018).
7. Kwon, O., Leejieun, Hwan, K. J., Seongjun, L. and Yoo, S. K.,
“Design of Deep De-nosing Network for Power Line Artifact in
Electrocardiogram,” Journal of Korea Multimedia Society, 23,
402-411(2020).
8. Badar, M., Haris, M. and Fatima, A., “Application of Deep Learning
for Retinal Image Analysis: A Review,” Computer Science Review,
35, 100203(2020).
9. Zhang, J. et al. in 2019 IEEE 89th Vehicular Technology Conference
(VTC2019-Spring). 1-5.
10. Li, Y. and Ma, Z., “Deep Learning-based Noise Reduction for
Seismic Data,” Journal of Physics: Conference Series, 1861,
012011(2021).
11. Hong, H., Hong, Q., Liu, J., Tong, W. and Shi, L., “Estimating
Relative Noise to Signal in DNA Microarray Data,” International Journal of Bioinformatics Research and Applications, 9, 433-
448(2013).
12. Sorkhi, M., Jahed-Motlagh, M. R., Minaei-Bidgoli, B. and Daliri,
M. R., “Hybrid Fuzzy Deep Neural Network Toward Temporalspatial-
frequency Features Learning of Motor Imagery Signals,”
Sci. Rep., 12, 22334(2022).
13. C, A. et al., “Noise Reduction in CT Images Using a Selective
Mean Filter,” Journal of Biomedical Physics & Engineering, 10,
623-634(2020).
14. Huang, T., Yang, G. and Tang, G., “A Fast Two-dimensional Median
Filtering Algorithm,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, 27, 13-18(1979).
15. Haddad, R. A. and Akansu, A. N., “A Class of Fast Gaussian
Binomial Filters for Speech and Image Processing,” IEEE Transactions
on Signal Processing, 39, 723-727(1991).
16. Lee, H., “Analysis of Preconcentration Dynamics inside Dead-end
Microchannel,” Korean Chem. Eng. Res., 61, 155-161(2023).
17. Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., “Concentration
Polarization and Nonlinear Electrokinetic Flow near a
Nanofluidic Channel,” Phys. Rev. Lett., 99, 044501(2007).
18. Kim, S. J., Li, L. D. and Han, J., “Amplified Electrokinetic
Response by Concentration Polarization near Nanofluidic Channel,”
Langmuir, 25, 7759-7765(2009).
19. Kim, J., Kim, H.-Y., Lee, H. and Kim, S. J., “Pseudo 1-D Micro/
Nanofluidic Device for Exact Electrokinetic Responses,” Langmuir,
32, 6478-6485(2016).
20. Choi, J. et al., “Selective Preconcentration and Online Collection of
Charged Molecules Using Ion Concentration Polarization,” RSC
Adv., 5, 66178-66184(2015).
21. Choi, J. et al., “Nanoelectrokinetic Selective Preconcentration
Based on Ion Concentration Polarization,” BIOCHIP J., 14, 100-
109(2020).
22. Kim, J., Cho, I., Lee, H. and Kim, S. J., “Ion Concentration
Polarization by Bifurcated Current Path,” Sci. Rep., 7, 5091(2017).
23. Dydek, E. V. and Bazant, M. Z., “Nonlinear Dynamics of Ion
Concentration Polarization in Porous Media: The Leaky Membrane
Model,” AIChE Journal, 59, 3539-3555(2013).
24. Robertson, R. M., Laib, S. and Smith, D. E., “Diffusion of Isolated
DNA Molecules: Dependence on Length and Topology,”
Proc. Natl. Acad. Sci. U.S.A., 103, 7310-7314(2006).
25. Salieb-Beugelaar, G. B., Dorfman, K. D., van den Berg, A. and
Eijkel, J. C. T., “Electrophoretic Separation of DNA in Gels and
Nanostructures,” Lab Chip, 9, 2508-2523(2009).
26. Yap, K. K., Fukuda, K., Vail, J. R., Wong, J. and Masen, M. A.,
“Spatiotemporal Mapping for In-situ and Real-time Tribological
Analysis in Polymer-metal Contacts,” Tribology International,
171, 107533(2022).
27. Posner, J. D., Pérez, C. L. and Santiago, J. G., “Electric Fields
Yield Chaos in Microflows,” Proc. Natl. Acad. Sci. U.S.A., 109,
14353-14356(2012).
28. Kwak, R., Pham, V. S. and Han, J., “Sheltering the Perturbed
Vortical Layer of Electroconvection Under Shear Flow,” J. Fluid
Mech., 813, 799-823(2017).
29. Cho, S.-Y. et al., “Finding Hidden Signals in Chemical Sensors
Using Deep Learning,” Anal. Chem., 92, 6529-6537(2020).