Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 30, 2023
Revised January 19, 2024
Accepted January 19, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향
Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction
Abstract
본 연구에서는 제조된 Ni/CexZr1-xO2 촉매를 허니컴 구조의 금속 모노리스 구조체 표면에 코팅하여 수증기 메탄 개
질 반응에 대한 활성을 연구하였다. Ce/Zr의 비율을 달리한 지지체를 합성하여 수증기 메탄 개질 반응에서의 거동을
확인하였으며, Ni 함량이 촉매 활성에 미치는 영향을 분석하기 위해 다양한 Ni 함량의 촉매를 제조하였다. 촉매의 특
성은 XRD, BET, TPR 및 SEM으로 분석하였으며 TPR 분석에서 활성 금속 Ni이 CeO2-ZrO2 혼합물 지지체와 강한
상호작용으로 Ni-Ce-Zr 산화물을 형성하였음을 나타내었다. 15 wt% Ni/Ce0.80Zr0.20O2 촉매는 수증기 메탄 개질 반응
에서 가장 높은 활성 및 안정성을 보였다. 우수한 산소저장 및 공여 특성의 CeO2와 열적 특성의 ZrO2를 복합소재로
제조하여 활성과 안정성이 향상된 촉매를 합성하였다.
In this study, synthesized Ni/CexZr1-xO2 catalysts were coated on the surface of honeycomb metalic monoliths to investigate catalytic activity in steam reforming of methane reactions. Supports with varying Ce/Zr ratios were synthesized to observe their behavior in the reforming reaction, and catalysts with Ni contents ranging from 5 wt% to 20 wt% were prepared to analyze the effect of Ni loading contents on catalytic activity. The catalysts were characterized by XRD, BET, TPR, and SEM. The TPR analysis indicated the formation of Ni-Ce-Zr oxide with a strong interaction between the active metal Ni and CeO2-ZrO2 support. The 15 wt% Ni/Ce0.80Zr0.20O2 catalyst exhibited the highest activity and stability in the steam reforming of methane reaction. Catalysts with enhanced activity and stability were synthesized by manufacturing composite materials using excellent oxygen storage and donor properties of CeO2 and the thermal properties of ZrO2.
References
Crucial Review,” Renew. Sust. Energ., 4(2), 157-175(2000).
2. Abbas, H. F. and Daud, W. W., “Hydrogen Production by Methane
Decomposition: a Review,” Int. J. Hydrog., 35(3), 1160-1190
(2010a).
3. Younas, M., Shafique, S., Hafeez, A., Javed, F. and Rehman, F.,
“An Overview of Hydrogen Production: Current Status, Potential,
and Challenges,” Fuel, 316, 123317(2022).
4. Zhu, X., Liu, X., Lian, H., Liu, J. and Li, X., “Plasma Catalytic
Steam Methane Reforming for Distributed Hydrogen Production,”
Catal. Today, 337, 69-75(2019).
5. Ogo, S. and Sekine, Y., “Recent Progress in Ethanol Steam Reforming
Using Non-noble Transition Metal Catalysts: A Review,”
Fuel Process. Technol., 199, 106238(2020).
6. Ambrosetti, M., Onincontro, D., Balzarotti, R., Beretta, A., Groppi,
G. and Troncori, E., “H2 Production by Methane Steam Reforming
over Rh/Al2O3 Catalyst Packed in Cu Foams: A Strategy for
the Kinetic Investigation in Concentrated Conditions,” Catal.
Today, 387, 107-118(2022).
7. Araujo, J. C. S., Oton, L. F., Bessa, B., Neto, A. B. S., Oliverio,
A. C., Lang, R., Otuobo, L. and Bueno, J. M. C., “The Role of Pt
Loading on La2O3-Al2O3 Support for Methane Conversion Reactions
via Partial Oxidation and Steam Reforming,” Fuel, 254,
115684(2019).
8. Azoncot, L., Bobadilla, L. F., Santos, J. L., Cordoba, J. M.,
Centeno, M. A. and Odriozola, J. A., “Influence of the Preparation
Method in the Metal-support Interaction and Reducibility of
Ni-Mg-Al Based Catalysts for Methane Steam Reforming,” Int.
J. Hydrog., 44(36), 19827-19840(2019).
9. Bej, B., Pradhan, N. C. and Neogi, S., “Production of Hydrogen
by Steam Reforming of Methane Over Alumina Supported Nano-
NiO/SiO2 Catalyst,” Catal. Today, 207, 28-35(2013).
10. Wang, Y., Peng, J., Zhou, C., Lim, Z.-Y., Wu, C., Ye, S. and Wang,
W. G., “Effect of Pr Addition on the Properties of Ni/Al2O3 Catalysts
with An Application in the Autothermal Reforming of
Methane,” Int. J. Hydrog., 39(2), 778-787(2014).
11. Boukha, Z., Gonzalez, C. J., Rivas, B. D., Velasco, J. R. G., Ortiz, J.
I. G. and Fonseca, R. L, “Synthesis, Characterisation and Performance
Evaluation of Spinel-derived Ni/Al2O3 Catalysts for Various
Methane Reforming Reactions,” Appl. Catal. B., 158-159, 190-
201(2014).
12. Li, M.-R., Lu, Z. and Wang, G.-C., “The Effect of Potassium on
Steam-methane Reforming on the Ni4/Al2O3 Surface: a DFT
Study,” Catal. Sci. Technol. 7, 3613-3625(2017).
13. Tada, M., Zhang, S., Malwadkar, S., Ishiguro, N., Soga, J., Nagai,
Y., Tezuka, K., Imoto, H., Matsuo, S. O. Y., Ohkoshi, S. and
Iwasawa, Y., “The Active Phase of Nickel/Ordered Ce2Zr2Ox Catalysts
with a Discontinuity (x=7–8) in Methane Steam Reforming,”
Angew. Chem. Int. Ed., 51(37), 9361-9365(2012).
14. Mohamed, H. O., Kulkarni, S. R., Velisoju, V. K., Zhang, Y.,
Yerrayya, A., Bai, X., Kolubah, P. D., Yoo, X., Morlanes, N. and
Castano, P., “Isolating the Effect of Co and Ce on Ni–X–Y/Al2O3
bi- and Trimetallic Reforming Catalysts for Hydrogen Generation,”
Int. J. Hydrog., 51, 922-935(2024).
15. Xu, S. and Wang, X., “Highly Active and Coking Resistant Ni/
CeO2–ZrO2 Catalyst for Partial Oxidation of Methane,” Fuel.,
84(5), 563-567(2005).
16. Matina, T., Vissanu, M., Thirasak, R. and Somchia, O., “Catalytic
Activity of CeO2–ZrO2 Mixed Oxide Catalysts Prepared via
Sol–gel Technique: CO Oxidation,” Catal. Today, 68(1-3), 53-61
(2001).
17. Querino, P. S., Bispo, J. R. C. and Rangel, M. D. C., “The Effect
of Cerium on the Properties of Pt/ZrO2 Catalysts in the WGSR,”
Catal. Today, 107-108, 920-925(2005).
18. Yin, K., Davis, R. J., Mahamulkar, S., Jones, C. W., Agrawal, P.,
Shibata, H. and Malek, A., “Catalytic Oxidation of Solid Carbon
and Carbon Monoxide over Cerium-zirconium Mixed Oxides,”
AIChE J., 63(2), 725-738(2017).
19. El-Solomony, R. A., Acharya, K., Al-Fatesh, A. S., Osman, A.
I., Alreshaidan, S. B., Kumar, N. S., Ahmed, H. and Kumor, R.,
“Enhanced Direct Methanation of CO2 Using Ni-based Catalysts
Supported on ZrO2, CeO2-ZrO2, and La2O3-ZrO2: The Effect of
Support Material on the Reducible NiO-interacted Species and
Catalytic Activity,” Mol. Catal., 547, 113378(2023).
20. Zhu, X., Wei, Y., Wang, H. and Li, K., “Ce–Fe Oxygen Carriers
for Chemical-looping Steam Methane Reforming,” Int. J. Hydrog.,
38(11), 4492-4501(2013).
21. Laosiripojana, N. and Assabumrungrat, S., “Methane steam Reforming
over Ni/Ce–ZrO2 Catalyst: Influences of Ce–ZrO2 Support
on Reactivity, Resistance Toward Carbon Formation, and Intrinsic
Reaction Kinetics,” Appl. Catal. A-Gen, 290(1-2), 200-211(2005).
22. Xiu, G. H., Li, P. and Rodrigues, A. E., “Sorption Enhanced Reaction
Process with Reactive Regeneration,” Chem. Eng. Sci., 57,
3893-3908(2002).