Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 23, 2023
Revised January 17, 2024
Accepted January 18, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
입자 크기 및 탄소 코팅에 따른 리튬이온배터리용 SiOx 음극활물질의 전기화학적 특성
Electrochemical Properties of SiOx Anode for Lithium-Ion Batteries According to Particle Size and Carbon Coating
Abstract
본 연구에서는 리튬이온배터리용 고용량 음극활물질인 실리콘의 부피팽창을 완화하고 사이클 안정성을 향상시키기
위해 SiOx@C 복합소재를 제조하였다. Stӧber 법을 통해 입자 크기가 각각 100, 200, 500 nm인 SiO2를 합성하였고,
마그네슘 열환원을 통해 SiOx (0≤x≤2)를 제조하였다. 그 후 SiOx에 PVC를 탄화시켜 SiOx와 C의 비율에 따라 SiOx@C
음극활물질을 합성하였다. 제조된 SiOx와 SiOx@C 음극활물질의 물리적 특성은 XRD, SEM, TGA, 라만분광법, XPS,
BET를 사용해 분석하였다. 그리고 사이클 테스트, 율속특성, CV, EIS 테스트를 통해 전기화학적 특성을 조사하였다.
입자 크기가 가장 작은 100 nm SiOx에 SiOx:C=70:30으로 탄소를 코팅하여 제조된 SiOx@C-7030은 100 사이클에서
1055 mAh/g의 방전용량과 81.9%의 용량을 유지하여 가장 우수한 전기화학적 특성을 보여주었다. 이는 SiOx 음극활
물질 입자의 크기를 줄이고, 탄소를 코팅하여 사이클 안정성을 향상시킬 수 있다는 것을 의미한다.
In this study, the electrochemical properties of SiOx@C composite materials were prepared to alleviate
volume expansion and cycle stability of silicon and to increase the capacity of anode material for LIBs. SiO2 particles of
100, 200, and 500 nm were synthesized by the Stӧber method, and reduced to SiOx (0≤x≤2) through the
magnesiothermic reduction method. Then, SiOx@C anode materials were synthesized by carbonization of PVC on
SiOx. The physical properties of prepared SiOx and SiOx@C anode materials were analyzed by XRD, SEM, TGA,
Raman spectroscopy, XPS and BET. The electrochemical properties were investigated by cycling performance, rate
performance, CV and EIS test. As a result, the SiOx@C-7030 manufactured by coating carbon at SiOx : C = 70 : 30 on
a 100 nm SiOx with the smallest particle size showed the best electrochemical properties with a discharge capacity of
1055 mAh/g and a capacity retention rate of 81.9% at 100 cycles. It was confirmed that cycle stability was impoved by
reducing particle size and carbon coating.
References
Y., Wang, X. L. Gu, C. D. and Tu, J. P., “Porous Reduced
Graphene Oxide Sheet Wrapped Silicon Composite Fabricated
by Steam Etching for Lithium-Ion Battery Application,” J. Power
Sources, 286, 431-437(2015).
2. Wu, L., Yang, J., Zhou, X., Zhang, M., Ren, Y. and Nie, Y., “Silicon
Nanoparticles Embedded in a Porous Carbon Matrix as a
High-Performance Anode for Lithium-Ion Batteries,” J. Mater.
Chem. A, 4(29), 11381-11387(2016).
3. Hsieh, C. C., Lin, Y. G., Chiang, C. L. and Liu, W. R., “Carbon-
Coated Porous Si/C Composite Anode Materials via Two-step
Etching/Coating Processes for Lithium-Ion Batteries,” Ceram.
Int., 46(17), 26598-26607(2020).
4. Wang, D., Zhou, C., Cao, B., Xu, Y., Zhang, D., Li, A., Zhou, J.,
Ma, Z., Chen, X. and Song, H., “One-Step Synthesis of Spherical
Si/C Composites with Onion-like Buffer Structure as High-
Performance Anodes for Lithium-Ion Batteries,” Energy Stor.
Mater., 24, 312-318(2020).
5. Chen, S., Gordin, M. L., Yi, R., Howlett, G., Sohn, H. and Wang,
D., “Silicon Core-Hollow Carbon Shell Nanocomposites with
Tunable Buffer Voids for High Capacity Anodes of Lithium-Ion
Batteries,” Phys. Chem. Chem. Phys., 14(37), 12741-12745(2012).
6. Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B. W.
and Wu, J., “Silicon-Based Nanomaterials for Lithium-Ion Batteries:
A Review,” Adv. Energy Mater., 4(1), 1300882(2014).
7. Preman, A. N., Lim, Y. E., Lee, S., Kim, S., Kim, I. T. and Ahn,
S. K. “Facile Synthesis of Polynorbornene-based Binder through
ROMP for Silicon Anode in Lithium-ion Batteries,” Korean J.
Chem. Eng., 40(10), 2529-2537(2023).
8. Liu, M. P., Li, C. H., Du, H. B. and You, X. Z., “Facile Preparation
of Silicon Hollow Spheres and Their Use in Electrochemical
Capacitive Energy Storage,” Chem. Comm., 48(41), 4950-4952(2012).
9. Entwistle, J., Rennie, A. and Patwardhan, S., “A Review of
Magnesiothermic Reduction of Silica to Porous Silicon for Lithium-
Ion Battery Applications and Beyond,” J. Mater. Chem. A, 6(38),
18344-18356(2018).
10. Zhou, C., Liu, J., Gong, X. and Wang, Z., “Optimizing the Function
of SiOx in the Porous Si/SiOx Network via a Controllable Magnesiothermic
Reduction for Enhanced Lithium Storage,” J. Alloys
Compd., 874, 159914(2021).
11. Moon, D. B., Kim, K. H. and Ahn, H. J., “Effect of Hierarchically
Reduced SiOx on Anode Performance of Li-Ion Batteries,” Korean
J. Chem. Eng., 40(2), 3046-3051(2023).
12. Cui, J., Zhang, H., Liu, Y., Li, S., He, W., Hu, J. and Sun, J.,
“Facile, Economical and Environment-Friendly Synthesis Process
of Porous N-Doped Carbon/SiOx Composite from Rice Husks
as High-property Anode for Li-Ion Batteries,” Electrochim. Acta,
334, 135619(2020).
13. Liu, Y., Ruan, J., Liu, F., Fan, Y. and Wang, Pu., “Synthesis of
SiOx/C Composite with Dual Interface as Li-Ion Battery Anode
Material,” J. Alloys Compd., 802, 704-711(2019).
14. Yu, B. C., Hwa, Y., Kim, J. H. and Sohn, H. J., “A New Approach
to Synthesis of Porous SiOx Anode for Li-Ion Batteries via Chemical
Etching of Si Crystallites,” Electrochim. Acta, 177, 426-430
(2014).
15. Nulu, A., Nulu, V. and Sohn, K. Y., “Silicon and Porous MWCNT
Composite as High Capacity Anode for Lithium-ion Batteries,”
Korean J. Chem. Eng., 37(10), 1795-1802(2020).
16. Zhang, J., Ma, P., Zhang, X., Liu, Z., Zheng, J., Zuo, Y., Xue, C.,
Cheng, B. and Li, C., “Core-Shell Structured SiOx-C Composite
for Lithium Ion Battery Anodes,” Energy Techno., 7(4), 1800800
(2019).
17. Dong, H., Fu, X., Wang, J., Wang, P., Ding, H., Song, R., Wang, S.,
Li, R. and Li, S., “In-situ Construction of Porous Si@C Composites
with LiCl Template to Provide Silicon Anode Expansion
Buffer,” Carbon, 173, 687-695(2021).
18. Green, D. L., Jayasundara, S., Lam, Y. F. and Harris, M. T., “Chemical
Reaction Kinetics Leading to the First Stober Silica Nanoparticles
– NMR and SAXS Investigation,” J. Non-Cryst. Solids,
315, 166-179(2003).
19. Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. and Makino,
K., “A Novel Method for Synthesis of Silica Nanoparticles,” J.
Colloid Interface Sci., 289(1), 125-131(2005).
20. Jiang, X., Tang, X., Tang, L., Zhang, B. and Mao, H., “Synthesis
and Formation Mechanism of Amorphous Silica Particles via
Sol-Gel Process with Tetraethylorthosilicate,” Ceram. Int., 45(6),
7673-7680(2019).
21. Yin, S., Zhao, D., Ji, Q., Xia, Y., Xia, S., Wang, X., Wang, M.,
Ban, J., Zhang, Y., Metwalli, E., Wang, X., Xiao, Y., Zuo, X., Xie,
S., Fang, K., Liang, S., Zheng, L., Qiu, B., Yang, Z., Lin, Y., Chen,
L., Wang, C., Liu, Z., Zhu, J., Müller-Buschbaum, P. and Cheng,
Y. J., “Si/Ag/C Nanohybrids with in Situ Incorporation of Super-
Small Silver Nanoparticles: Tiny Amount, Huge Impact,” ACS
Nano, 12(1), 861-875(2018).
22. Jin, C., Dan, J., Zou, Y., Xu, G., Yue, Z., Li, X., Sun, F., Zhou, L.
and Wang, L., “Carbon-Coated Nitrogen Doped SiOx Anode Material
for High Stability Lithium Ion Batteries,” Ceram. Int., 47(20),
29443-29450(2021).
23. Cong, R., Park, H. H., Jo, M., Lee, H. and Lee, C. S., “Synthesis
and Electrochemical Performance of Electrostatic Self-Assembled
Nano-Silicon@N-Doped Reduced Graphene Oxide/Carbon Nano fibers Composite as Anode Material for Lithium-Ion Batteries,”
Molecules, 26(16), 4831(2021).
24. Yu, Q., Ge, P., Liu, Z., Xu, M., Yang, W., Zhou, L., Zhao, D. and
Mai, L., “Ultrafine SiOx/C Nanospheres and Their Pomegranatelike
Assemblies for High-Performance Lithium Storage,” J. Mater.
Chem. A, 6(30), 14903-14909(2018).
25. Luo, W., Wang, X., Meyers, C., Wannenmacher, N., Sirisakssontorn,
W., Lerner, M. M. and Ji, X., “Efficient Fabrication of Nanoporous
Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic
Reactions,” Sci. Rep., 3(1), 2222(2013).
26. Lakhonchai, A., Chingsungnoen, A., Poolcharuansin, P., Chanlek,
N., Tunmee, S. and Rittihong, U., “Improvement of Corrosion
Resistance and Mechanical Properties of Chrome Plating by Diamond-
like Carbon Coating with Different Silicon-Based Interlayers,”
Mater. Res. Express., 9(5), 055604(2022).
27. Liu, S. F., Kuo, C. H., Lin, C. C., Lin, H. Y., Lu, J. C. Z., Kang,
W., Fey, G. T. K. and Chen, H. Y., “Biowaste-Derived Si@SiOx/C
Anodes for Sustainable Lithium-Ion Batteries,” Electrochim. Acta,
403, 139580(2022).
28. Bashouti, M. Y., Sardashti, K., Ristein, J. and Christiansen, S.
H., “Early Stages of Oxide Growth in H-Terminated Silicon Nanowires:
Determination of Kinetic Behavior and Activation Energy,”
Phys. Chem. Chem. Phys., 14(34), 11877-11881(2012).
29. Yao, Y., Xu, X., Zhao, H., Tong, Y. and Li, Y., “Multilayer Si@SiOx@
Void@C Anode Materials Synthesized via Simultaneously Carbonization
and Redox for Li-Ion Batteries,” Ceram. Int., 48(9),
12217-12227(2022).
30. Hu, G., Yu, R., Liu, Z., Yu, Q., Zhang, Y., Chen, Q., Wu, J., Zhou,
L. and Mai, L., “Surface Oxidation Layer-Mediated Conformal
Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage,”
ACS Appl. Mater. Interfaces, 13(3), 3991-3998(2021).
31. Tao, H. C., Huang, M., Fan, L. Z. and Qu, X., “Interweaved Si@SiOx/
C Nanoporous Spheres as Anode Materals for Li-Ion Batteries,”
Solid State Ion, 220, 1-6(2012).
32. Lee, E. H., Jeong, B. O., Jeong, S. H., Kim, T. J., Kim, Y. S. and
Jung, Y., “Effect of Carbon Matrix on Electrochemical Performance
of Si/C Composites for Use in Anodes of Lithium Secondary
Batteries,” Bull. Korean Chem. Soc., 34(5), 1435-1440(2013).
33. Zhu, M., Yang, J., Yu, Z., Chen, H. and Pan, F., “Novel Hybrid Si
Nanocrystals Embedded in a Conductive SiOx@C Matrix from
One Single Precursor as a High Performance Anode Material
For Lithium-Ion Batteries,” J. Mater. Chem. A, 5(15), 7026-7034
(2017).
34. Li, Y., Wang, R., Zhang, J., Chen, J., Du, C., Sun, T., Liu, J.,
Gong, C., Guo, J., Yu, L. and Zhang, J., “Sandwich Structure of
Carbon-Coated Silicon/Carbon Nanofiber Anodes for Lithium-
Ion Batteries,” Ceram. Int., 45(13), 16195-16201(2019).
35. Cen, Y., Qin, Q., Sisson, R. D. and Liang, J., “Effect of Particle
Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-
Ion Battery Anodes,” Electrochim. Acta, 251, 690-698(2017).
36. Koraag, P. Y. E., Firdaus, A. M., Hawari, N. H., Refino, A. D.,
Dempwolf, W., Iskandar, F., Peiner, E., S. Wasisto, H. and Sumboja,
A., “Covalently Bonded Ball-Milled Silicon/CNT Nanocomposite
as Lithium-Ion Battery Anode Material,” Batteries, 8(10), 165
(2022).
37. Liu, X. H., Zhong, L., Huang, S., Mao, S. X., Zhu, T. and Huang, J.
Y., “Size-Dependent Fracture of Silicon Nanoparticles During
Lithiation,” ACS Nano, 6(2), 1522-1531(2012).
38. Wu, L., Zhou, H., Yang, J., Zhou, X., Ren, Y., Nie, Y. and Chen,
S., “Carbon Coated Mesoporous Si Anode Prepared by a Partial
Magnesiothermic Reduction for Lithium-Ion Batteries,” J. Alloys
Compd., 716, 204-209(2017).
39. Zhang, X., Zhou, L., Huang, M., Yang, C., Xu, Y. and Huang,
J., “Synthesis of Porous Si/C by Pyrolyzing Toluene as Anode in
Lithium-Ion Batteries with Excellent Lithium Storage Performance,”
Ionics, 25, 2093-2102(2019).
40. Cui, H., Chen, K., Shen, Y. and Wang, Z., “Self-Sacrificed Synthesis
of Amorphous Carbon-Coatied SiOx as Anode Materials
for Lithium-Ion Batteries,” Int. J. Electrochem. Sci., 13, 5474-
5487(2018).