Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 25, 2023
Revised October 13, 2023
Accepted November 29, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용
Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets
Abstract
폐어망은 해양 플라스틱 폐기물의 50% 이상을 차지하며, 해양생태계를 파괴하는 주요 원인으로 지목되고 있다. 이
러한 문제를 해결하기 위해 폐어망은 소각, 매립, 기계적 재활용 등의 방법으로 처리되고 있으나, 부가가치가 낮은 제
품으로 재활용되며, 오염 물질을 배출한다는 한계가 존재한다. 하지만 플라스틱 고분자로 구성된 폐어망은 열분해 방
법을 통해 처리할 경우, 합성가스 및 열분해유와 같은 유용한 자원으로 재활용할 수 있다. 따라서 본 연구에서는 CO2
기반에서 폐어망을 촉매 열분해하여 고순도의 H2를 생산하는 공정을 제안하였다. 제안된 공정은 다음 3단계로 구성된
다. 첫째, 전처리 된 폐어망을 CO2 기반 하 Ni/SiO2 촉매 열분해 반응을 통해 합성가스 및 열분해유를 생산한다. 둘째,
생성된 열분해유를 연소시켜 열분해 반응의 에너지원으로 재사용한다. 마지막으로, 합성가스를 WGS (Water-Gas-Shift)
및 PSA (Pressure Swing Adsorption)를 통해 고순도의 H2로 전환한다. 본 연구에서는 제안된 공정의 열분해 결과를 일
반적인 열분해 조건인 기존 N2 기반 열분해 결과와 비교하였다. 시뮬레이션 결과, 폐어망 500 kg/h을 열분해 시 N2 기
반에서는 2.933 kmol/h의 고순도 H2를, CO2 기반에서는 3.605 kmol/h 의 고순도 H2를 생산 가능했다. CO2 기반 폐어
망 열분해에서 CO 생산이 향상되어 최종적으로 H2 생산량이 증대된 결과가 도출되었다. 또한 폐어망 열분해 시 CO2
기반에서는 공정 운전 과정에서 배출되는 CO2를 포집 후 활용함으로써, N2 기반 열분해에 비해 CO2 배출량을 89.8%
줄일 수 있었다. 연구 결과를 바탕으로 CO2 기반에서의 제안 공정은 폐어망 재활용과 더불어 친환경적인 수소 연료
생산이라는 목표를 달성할 수 있을 것으로 기대된다.
Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the
degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and
mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs,
comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis.
Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic
pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated
and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via
the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the
proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that
pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of highpurity
H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2
output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and
utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently
recycle FNW and generate eco-friendly hydrogen product.
References
Waste Upcycling—recovery of Nylon Monomers from Fishing
Net Waste Using Seashell Waste-derived Catalysts in a CO2-
mediated Thermocatalytic Process,” J. Mater. Chem. A. 10, 20024-2. [WAP] World Animal Protection, Ghosts Beneath the Waves,
76, (2018).
3. Xu, D., Xiong, Y., Zhang, S. and Su, Y., “The Synergistic Mechanism
Between Coke Depositions and Gas for H2 Production
From Co-pyrolysis of Biomass and Plastic Wastes via Char Supported
Catalyst,” Waste Manag. 121, 23-32(2021).
4. Cudjoe, D. and Wang, H., “Plasma Gasification Versus Incineration
of Plastic Waste: Energy, Economic and Environmental Analysis,”
Fuel Process. Technol. 237, 107470(2022).
5. Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L. and Fraternali,
F., “Recycling of Plastic Solid Waste: A State of Art Review and
Future Applications,” Compos. Part B Eng. 115, 409-422(2017).
6. Belden, E. R., Rando, M., Ferrara, O. G., Himebaugh, E. T.,
Skangos, C. A., Kazantzis, N. K., Paffenroth, R. C. and Timko,
M. T., “Machine Learning Predictions of Oil Yields Obtained by
Plastic Pyrolysis and Application to Thermodynamic Analysis,”
ACS Eng. Au. 3, 91-101(2023).
7. Jung, S., Lee, S., Dou, X. and Kwon, E. E., “Valorization of Disposable
COVID-19 Mask Through the Thermo-chemical Process,”
Chem. Eng. J. 405, 126658(2021).
8. Hamid, K., Sabir, R., Hameed, K., Waheed, A. and Ansari, M.
U., “Economic Analysis of Fuel Oil Production from Pyrolysis
of Waste Plastic,” Austin Environ. Sci. 6, 1-8(2021).
9. Kabir, M. J., Chowdhury, A. A. and Rasul, M. G., “Pyrolysis of
Municipal Green Waste: A Modelling, Simulation and Experimental
Analysis,” Energies. 8, 7522-7541(2015).
10. Kwon, E. E., Kim, S. and Lee, J., “Pyrolysis of Waste Feedstocks
in CO2 for Effective Energy Recovery and Waste Treatment,” J.
CO2 Util. 31, 173-180(2019).
11. Lee, T., Lee, J., Ok, Y. S., Oh, J. I., Lee, S. R., Rinklebe, J.,
Kwon, E. E., “Utilizing CO2 to Suppress the Generation of Harmful
Chemicals from Thermal Degradation of Polyvinyl Chloride,” J.
Clean. Prod. 162, 1465-1471(2017).
12. Lee, T., Oh, J. I., T. Kim, Tsang, D. C. W., Kim, K. H., Lee, J.
and Kwon, E. E., “Controlling Generation of Benzenes and
Polycyclic Aromatic Hydrocarbons in Thermolysis of Polyvinyl
Chloride in CO2,” Energy Convers. Manag. 164, 453-459(2018).
13. Lee, J., Lee, T., Tsang, Y. F., Oh, J. I. and Kwon, E. E., “Enhanced
Energy Recovery from Polyethylene Terephthalate via Pyrolysis in
CO2 Atmosphere While Suppressing Acidic Chemical Species,”
Energy Convers. Manag. 148, 456-460(2017).
14. Kwon, E. E., Yi, H. and Castaldi, M. J., Utilizing Carbon Dioxide
as a Reaction Medium to Mitigate Production of Polycyclic Aromatic
Hydrocarbons from the Thermal Decomposition of Styrene
Butadiene Rubber, (2012).
15. Jung, S., Choi, D., Park, Y.-K., Tsang, Y. F., Klinghoffer, N. B.,
Kim, K.-H. and Kwon, E. E., “Functional use of CO2 for Environmentally
Benign Production of Hydrogen Through Catalytic
Pyrolysis of Polymeric Waste,” Chem. Eng. J. 399, 125889(2020).
16. Weißbach, G., Gerke, G., Stolte, A. and Schneider, F., “Material
Studies for the Recycling of Abandoned, Lost or Otherwise Discarded
Fishing Gear (ALDFG),” Waste Manag. Res. 40, 1039-
1046(2021).
17. Westerhout, R. W. J., Kuipers, J. A. M., Van Swaaij, W. P. M.,
“Experimental Determination of the Yield of Pyrolysis Products
of Polyethene and Polypropene. Influence of Reaction Conditions,”
Ind. Eng. Chem. Res. 37, 841-847(1998).
18. Hong, S., Lee, J., Cho, H., Kim, M., Moon, I. and Kim, J.,
“Multi-objective Optimization of CO2 Emission and Thermal
Efficiency for On-site Steam Methane Reforming Hydrogen
Production Process Using Machine Learning,” J. Clean. Prod.
359, 132133(2022).
19. Ramzan, N., Ashraf, A., Naveed, S. and Malik, A., “Simulation
of Hybrid Biomass Gasification Using Aspen plus: A Comparative
Performance Analysis for Food, Municipal Solid and Poultry
Waste,” Biomass and Bioenergy. 35, 3962-3969(2011).
20. Wang, M., Lawal, A., Stephenson, P., Sidders, J. and Ramshaw,
C., “Post-combustion CO2 Capture with Chemical Absorption: A
State-of-the-art Review,” Chem. Eng. Res. Des. 89, 1609-1624(2011).
21. Almohamadi, H., Alamoudi, M., Ahmed, U., Shamsuddin, R.
and Smith, K., “Producing Hydrocarbon Fuel From the Plastic
Waste: Techno-economic Analysis,” Korean J. Chem. Eng. 38,
2208-2216(2021).
22. Kim, Y., Lee, J., Cho, H. and Kim, J., “Novel Cryogenic Carbon
Dioxide Capture and Storage Process Using LNG Cold Energy
in a Natural Gas Combined Cycle Power Plant,” Chem. Eng. J.
456, 140980(2023).
23. Bao, J., Zhang, L., Song, C., Zhang, N., Guo, M. and Zhang, X.,
“Reduction of Efficiency Penalty for a Natural Gas Combined
Cycle Power Plant with Post-combustion CO2 Capture: Integration
of Liquid Natural Gas Cold Energy,” Energy Convers.
Manag. 198, 111852(2019).