ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 18, 2023
Revised October 18, 2023
Accepted November 7, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

Evaluation and Comparison of the Solubility Models for Solute in Monosolvents

Northwest University of Political Science and Law,
zhiminjie0303@163.com
Korean Chemical Engineering Research, February 2024, 62(1), 53-69(17), 10.9713/kcer.2024.62.1.53 Epub 1 February 2024
downloadDownload PDF

Abstract

The solubility of Cloxacillin sodium in ethanol, 1-propanol, isopropanol, and acetone solutions was measured at different temperatures. The melting property was also tested by using a differential scanning calorimeter (DSC). Then, the solubility data were fitted using Apelblat equation and λh equation, respectively. The Wilson model and NRTL model were not utilized to correlate the test data, since Cloxacillin sodium will decompose directly after melting. For comparison purposes, the four empirical models, i.e., Apelblat equation, λh equation, Wilson model and NRTL Model, were evaluated by using 1155 solubility curves of 103 solutes tested under different monosolvents and temperatures. The comparison results indicate that the Apelblat equation is superior to the others. Furthermore, a new method (named the calculation method) for determining the Apelblat equation using only three data points was proposed to solve the problem that there may not be enough solute in the determination of solubility. The log-logistic distribution function was used to further capture the trend of the correlation and to make better quantitative comparison between predicted data and the experimental ones for the Apelblat equation determined by different methods (fitting method or calculation method). It is found that the proposed calculation method not only greatly reduces the number of test data points, but also has

satisfactory prediction accuracy.

References

1. Moodley, K. and Ramjugernath, D., “Solubility Data for Roflumilast
and Maraviroc in Various Solvents between T = (278.2−323.2)
K,” J. Chem. Eng. Data, 64, 4599-4604(2019).
2. Wang, J., Yuan, X. and Wu, J. X., “4,4′-Methylene-bis-(2-chloroaniline)
Dissolved in Some Neat Solvents: Saturated Solubility,
Mixing Properties, and Solvent Effect,” J. Chem. Eng. Data, 65,
5018-5029(2020).
3. Li, Y. J., Lu, Ch. L., Chen, R. R. and Wu, K., “Determination,
Correlation, and Thermodynamic Analysis of the Solid–Liquid
Phase Equilibrium of 1,4-Dicyanobenzene in Pure Solvents at
Various Temperatures,” J. Chem. Eng. Data, 65, 4991-5002(2020).
4. Ouyang, R. L., Li, W. L., Wang, L. Y., Yao, M. H., Du, Sh. Ch.
and Wang, Y., “Solubility Measurement and Data Correlation of
Thiabendazole in 12 Pure Organic Solvents from 283.15 to
323.15 K,” J. Chem. Eng. Data, 65, 5055-5061(2020).
5. Guo, Z. A., Sun, W., Lu, W. Y. and Zheng, G. X., “Solubility
Measurement, Model Correlation, and Solute–Solvent Interactions
of Pidotimod in Nine Pure Solvents and Two Binary Solvents
at Temperatures Ranging from 278.15 to 323.15 K,” J. Chem.
Eng. Data, 65, 5483-5497(2020).
6. Cheng, M., Zhao, X., Hao, A. X, Jiao, W. H., Yang, W. G. and
Hu, Y. H., “Thermodynamic Models for Determination of
Solid–Liquid Equilibrium of the Sarafloxacin Hydrochloride in
Pure and Binary Organic Solvents from (278.15 to 333.15) K,” J.
Chem. Eng. Data, 65, 4869-4880(2020).
7. Zhu, A. F., Hong, K., Zhu, F. X., Dai, B. L., Xu, J. M. and Zhao,
W., “Solubility Determination and Model Correlation of Pymetrozine
and Evaluation of the Effect of Solvent Properties and
Composition,” J. Chem. Eng. Data, 64, 3148-3155(2019).
8. Yu, Sh., Xing, W. G., Xue, F. M., Cheng, Y., Liu, Y. Zh., Chen,
H., Hao, C. and Sun, Y. Y., “Measurement and Correlation of
Solubility and Thermodynamic Properties of Fluoxetine Hydrochloride
in 15 Pure Solvents and a Methanol + Water Binary
Solvent System,” J. Chem. Eng. Data, 65, 4656-4668(2020).
9. Chen, X. F., Gong, X. F., Xu, J., Li, P., Wang, H. P. and Ning, L.
F., “Measurement and Correlation of the Solubility of Etonogestrel
in Ten Pure and Binary Mixed Solvent Systems at Temperatures
from 273.15 to 323.15 K,” J. Chem. Eng. Data, 65, 3190-
3202(2020).
10. Wu, Y. F., Wu, J. Q., Wang, J. Ch. and Gao, J. W., “Effect of Solvent
Properties and Composition on the Solubility of Ganciclovir
Form I,” J. Chem. Eng. Data, 64, 1501-1507(2019).
11. Ouyang, J. B., Chen, J., Zhou, L. M., Liu, Zh. R. and Zhang, Ch.
T., Solubility Measurement, Modeling, and Dissolution Thermodynamics
of Propylparaben in 12 Pure Solvents,” J. Chem. Eng.
Data, 65, 4725-4734(2020).
12. Zhu, W. J., Fan, Y. W., Xu, Q., Liu, X. X., Heng, B., Yang, W. G.
and Hu, Y. H., “Saturated Solubility and Thermodynamic Evaluation
of l-Tryptophan in Eight Pure Solvents and Three Groups
of Binary Mixed Solvents by the Gravimetric Method at T =
278.15–333.15 K,” J. Chem. Eng. Data, 64, 4154-4168(2019).
13. Li, Y. X., Li, C. C., Gao, X. Q. and Lv, H. K., “Solubility and
Solvent Effect of 1-(2-Bromo-phenyl)-pyrrole-2,5-dione in 14 Pure
Solvents from 278.15 to 323.15 K,” J. Chem. Eng. Data, 64,
4501-4509(2019).
14. Buchowski, H., Ksiazczak, A. and Pietrzyk, S., “Solvent Activity
Along a Saturation Line and Solubility of Hydrogen-bonding
Solids, J. Phys. Chem., 84, 975-979(1980).
15. Zhu, Ch. F., Yin, H., Zhou, Y. Y. and Zhao, H. K., “Saturated
Solubility and Thermodynamic Mixing Properties of 3,5-Dibromo-
4-hydroxybenzaldehyde in 16 Individual Solvents at Elevated
Temperatures,” J. Chem. Eng. Data, 65, 3744-3753(2020).
16. Williamson, A. T., “The Exact Calculation of Heats of Solution
From Solubility Data,” Transactions of the Faraday Society, 40,
421-436(1994).
17. Apelblat, A. and Manzurola, E., Solubilities of L-aspartic, DLaspartic,
DL-glutamic, p-hydroxybenzoic, o-anistic, p-anisic, and
itaconic acids in water from T=278K to T=345 K,” J. Chem.
Thermodynamics, 29, 1527-1533(1997).
18. Apelblat, A. and Manzurola, E., “Solubilities of o-acetylsalicylic, 4-
aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-
DLaspartate in water from T = (278 to 348) K,” J. Chem. Thermodynamics,
31, 85-91(1991).
19. Apelblat, A. Manzurola, E. and Balal, N. A., “The Solubilities of
Benzene Polycarboxylic Acids in Water,” J. Chem. Thermody namics, 38, 565-571(2006).
20. Buchowski, H. and Khiat, A., “Solubility of Solids in Liquids:
One-parameter Solubility Equation,” Fluid Phase Equilib, 25,
273-278(1986).
21. Buchowski, H. and Khiat, A., “Thermodynamics of Solubility of
Solids in Liquids,” Polish J. Chem., 73, 1631-1663(1999).
22. Wilson, G. M., “Vapor-Liquid Equilibrium. XI. A New Expression
for the Excess Free Energy of Mixing,” J. Am. Chem. Soc.,
86, 127-130(1964).
23. Ghosh, S. K. and Chopra, S. J., “Activity Coefficients from the
Wilson Equation,” Ind. Eng. Chem. Process Des. Dev, 14, 304-
308(1975).
24. Scott, R. L., “Corresponding States Treatment of Nonelectrolyte
Solutions,” J. Chem. Phys. 25, 193-205(1956).
25. Zhang, Y., J Liu, J. Q. and Wang, W. Zh., “Determination and
Correlation of Solubilities of 1,3,5-Trifluoro-2,4,6-triiodobenzene
in Different Solvents from 289.25 to 332.15 K,” J. Chem.
Eng. Data, 64, 4306-4313(2019).
26. Zhi, M. J., Wang, J. K., Jia, C. Y. and Wang, Y. L., “Solubility of
Cloxacillin Sodium in Different Binary Solvents,” J. Chem. Eng.
Data, 54, 1084-1086(2009).
27. Bao, Y. X., Xu, R. J. and Zhao, H. K., “2-Amino-6-chlorobenzoic
Acid Dissolved in Numerous Individual Solvents: Equilibrium
Solubility, Thermodynamic Modeling, and Mixing Properties,”
J. Chem. Eng. Data, 65, 3252-3260(2020).
28. Li, R. R., Wang, W., Chen, X. L., Chen, H., Bao, H. H., Zhu, Y.
W., Zhao, J. and Han, D. M., “Equilibrium Solubility Determination
and Correlation of Monobenzone in Fifteen Monosolvents
at a Series of Temperatures,” J. Chem. Eng. Data, 65, 2300-2309
(2020).
29. Lin, J. W., Shi, P., Gao, Y., Yu, Ch. Y., Liu, Y. B. and Wu, S. G.,
Solubility Determination and Thermodynamic Correlation of 2-
Benzimidazolone in Twelve Pure Solvents from 283.15 to
323.15 K,” J. Chem. Eng. Data, 65, 2838-2845(2020).
30. Sun, J. P., Wang, L., Ding, S. H. W., Sun, X. B. and Xu, L., Solubility
Behavior and Thermodynamic Analysis of Bisphenol A
in 14 Different Pure Solvents,” J. Chem. Eng. Data, 65, 2846-
2858(2020).
31. Liu, H. M., Wang, Sh., Qu, Ch., Li, M. M. and Qu, Y. X.,
“Solid–Liquid Equilibrium of Chlorpropamide in 14 Pure Solvents
at Temperature of 283.15 to 323.15 K,” J. Chem. Eng.
Data, 65, 2859-2871(2020).
32. Wu, J. X., Zhou, Y. Y., Yuan, X., Wang, J. and Zhao, H. K.,
“Solubility Modeling, Solvent Effect, and Dissolution Properties
of 4-Nitrophenylacetic Acid in Thirteen Solvents Ranging
from 283.15 to 328.15 K,” J. Chem. Eng. Data, 65, 2894-2902
(2020).
33. Zhang, L. H. and Liu, J. T., “Solubility Determination and Correlation
of 4-(Bromomethyl)-2(1H)-quinolinone in Different Pure
Solvents Over the Temperature Range from 273.15 to 313.15
K,” J. Chem. Eng. Data, 65, 4468-4474(2020).
34. Zhou, Y. Y., Wang, Zh. S. H., Wu, J. X., Wang, J. and Zhao, H.
K., “Saturated Solubility of 2-Acrylamide-2-methylpropanesulfonic
Acid in 14 Neat Organic Solvents from 283.15 to 328.15
K,” J. Chem. Eng. Data, 65, 4692-4698(2020).
35. Liu, X. J., Zhang, Y. and Wang, X. Zh., “Solubility of Benzanilide
Crystals in Organic Solvents,” J. Chem. Eng. Data, 65, 3808-3819
(2020).
36. Zhou, Y. Y., Wu, J. X., Wang, J. and Zhao, H. K., “Equilibrium
Solubility and Dissolution Property Analysis of 2-Nitrophenylacetic
Acid in 13 Pure Solvents at Elevated Temperatures,” J.
Chem. Eng. Data, 65, 4157-4165(2020).
37. Chen, K., Xia, T., Shao, D. F., Zhou, G. Q., Shen, J. and Yang, Y.
H., Solubility Measurement and Mathematical Correlation of
Ticagrelor in Different Pure Solvents,” J. Chem. Eng. Data, 65,
3560-3565(2020).
38. Deng, Zh. M., Li, F. Zh., Zhao, G. M., Yang, W. G. and Hu, Y.
H., “Solubility and Dissolution Behavior Analysis of 7-Azaindole
in Pure and Binary Mixture Solvents at Temperatures Ranging
from 278.15 to 323.15K,” J. Chem. Eng. Data, 65, 3579-3592(2020).
39. Zhou, G. Q., Chen, K., Yang, Z. H., Shao, D. F. and Fan, H. J.,
“Solubility and Thermodynamic Model Correlation of Zonisamide
in Different Pure Solvents from T = (273.15 to 313.15)
K,” J. Chem. Eng. Data, 65, 3637-3644(2020).
40. Zhang, H. J., Shi, Y. L. and Wang, H. J., “Solubility Determination
of Nitazoxanide in Twelve Organic Solvents from T = 273.15 to
313.15 K,” J. Chem. Eng. Data, 65, 3645-3651(2020).
41. Jia, Sh. Zh., Zhang, K. K., Wan, X. X., Gao, Zh. G., Gong, J. B.
and Rohani, S., “Effects of Temperature and Solvent Properties
on the Liquid–Solid Phase Equilibrium of γ-Pyrazinamide,” J.
Chem. Eng. Data, 65, 3667-3678(2020).
42. Wu, Y. F., Ren, M. L. and Zhang, X. L., “Solubility Determination
and Model Correlation of Benorilate between T = 278.18
and 318.15 K,” J. Chem. Eng. Data, 65, 3690-3695(2020).
43. Yang, Z. H., Shao, D. F. and Zhou, G. Q., “Investigation of
Gramine Solubility and Mathematical Modeling in Various Pure
Solvents and the Co-Solvent Mixture of (Ethanol + Ethyl Acetate)
at (273.15–313.15) K,” J. Chem. Eng. Data, 65, 1488-1496
(2020).
44. Gu, Y. Y., Yang, W. G., Hao, A. X., Xu, Q. and Hu, Y. H.,
“Determination and Analysis of Solubility of 3-Bromo-2-Methylbenzoic
Acid in Different Solvent Systems at Different Temperatures
(T = 278.15–328.15 K),” J. Chem. Eng. Data, 65, 1571-
1582(2020).
45. Chen, X., Xu, Q. Q., Liu, Zh. Y., Zhu, X. L., Zheng, H. L., Zhao,
J., Li, R. R. and Han, D. M., “Solubility Determination, Model
Correlation, and Solvent Effect Analysis of Nisoldipine in Different
Solvent Systems at a Series of Temperature,” J. Chem. Eng.
Data, 65, 1627-1635(2020).
46. Gu, Y. Y., Yang, W. G., Hao, A. X., Xu, Q. and Hu, Y. H.,
“Determination and Analysis of Solubility of 2-Chloromethyl-4-
methylquinazoline in Different Solvent Systems at Different
Temperatures (T = 281.15–331.15 K),” J. Chem. Eng. Data, 65,
1736-1746(2020).
47. Guo, Sh. Zh., He, Y., Wang, G., Dong, W. B., Wan, X. X, Zhao,
Y. X. and Du, Sh. Ch., “Solubility Measurement, Correlation,
and Thermodynamic Analysis of N-Acetyl-l-leucine in 12 Pure
Organic Solvents from 283.15 to 323.15 K,” J. Chem. Eng. Data,
65, 2008-2016(2020).
48. Tian, N. N., Yu, Ch. Y., Du, Sh. Ch., Lin, B., Gao, Y. and Gao,
Zh. G., “Solubility Measurement and Data Correlation of Isatoic
Anhydride in 12 Pure Solvents at Temperatures from 288.15 to
328.15 K,” J. Chem. Eng. Data, 65, 2044-2052(2020).
49. Gheitasi, N., Nazari, A. H. and Haghtalab, A., “Thermodynamic Modeling and Solubility Measurement of Cetirizine Hydrochloride
and Deferiprone in Pure Solvents of Acetonitrile, Ethanol,
Acetic Acid, Sulfolane, and Ethyl Acetate and Their Mixtures,”
J. Chem. Eng. Data, 64, 5486-5496(2019).
50. Wu, Z. L., Shen, Ch. X., Li, W., Wu, J. X. and Zhao, H. K.,
“Solubility and Thermodynamic Aspects of 5,7-Dibromo-8-
hydroxyquinoline in Thirteen Neat Solvents at Temperatures
from 288.15 to 328.15 (333.15) K,” J. Chem. Eng. Data, 65,
2088-2097(2020).
51. Liu, M. M., Wang, Sh., Qu, Ch., Zhang, Zh. Ch. and Qu, Y. X.,
“Solubility Determination and Thermodynamic Properties of
Bezafibrate in Pure and Binary Mixed Solvents,” J. Chem. Eng.
Data, 65, 2156-2169(2020).
52. Zhao, X., Han, G. and Zhao, H. K., “Solubility of 3,5-Dinitrosalicylic
Acid in Fourteen Pure Solvents over Temperatures from
278.15 to 323.15 K,” J. Chem. Eng. Data, 65, 2230-2237(2020).
53. Li, K. and Forciniti, D., “Solubility of Lanosterol in Organic
Solvents and in Water–Alcohol Mixtures at 101.8 kPa,” J. Chem.
Eng. Data, 65, 436-445(2020).
54. Bao, Y. X., Wu, J. X., Zhao, X. and Zhao, H. K., “2-Methoxy-4-
nitroaniline Solubility in Several Monosolvents: Measurement,
Correlation, and Solvent Effect Analysis,” J. Chem. Eng. Data,
65, 757-765(2020).
55. Yu, Ch. Y., Chen, M. Y., Lin, B., Tian, N. N., Gao, Y. and Wu, S.
G., “Solubility Measurement and Data Correlation of 5,5-Dimethylhydantoin
in 12 Pure Solvents at Temperatures from 283.15 to
323.15 K,” J. Chem. Eng. Data, 65, 814-820(2020).
56. Li, Y. J., Li, X. F. and Wu, K., “Measurement and Modeling of
the Solubility of N,N-Dibenzylhydroxylamine in 17 Solvents
from T = 273.15 to 323.35 K and Thermodynamic Properties of
Solution,” J. Chem. Eng. Data, 65, 828-840(2020).
57. Yang, Y. J., Du, Sh. Ch., Dong, W. B., Wang, G., Li, H. Ch.,
Gong, J. B. and Wu, S. G., “Correlation and Thermodynamic
Analysis of Solubility of Mesotrione in Pure Solvents,” J. Chem.
Eng. Data, 65, 877-884(2020).
58. Wu, Y. F., Wu, Ch. M., Yan, S. Y. and Hu, B., “Solubility of
Bisacodyl in Pure Solvent at Various Temperatures: Data Correlation
and Thermodynamic Property Analysis,” J. Chem. Eng.
Data, 65, 43-48(2020).
59. Kuang, W. J., Ji, Sh. Ch., Wang, X. F., Liao, A. P., Lan, P. and
Zhang, J. Y., “Solid–Liquid Equilibrium of Lamotrigine in 12
Pure Solvents from T = 283.15 to 323.15 K: Experimental Determination
and Thermodynamic Modeling,” J. Chem. Eng. Data, 65,
169-176(2020).
60. Wang, J., Yuan, X. and Jaubert, J.-N., “4-Chloro-2-nitroaniline
Solubility in Several Pure Solvents: Determination, Modeling,
and Solvent Effect Analysis,” J. Chem. Eng. Data, 65, 222-232
(2020).
61. Gu, J. H., Zhao, H. Y., Zou, H. and Xu, R. J., “Solubility and
Model Correlation of Amprolium Hydrochloride in Pure Solvent at
the Temperature Range of 273.15–313.15 K,” J. Chem. Eng. Data,
65, 274-279(2020).
62. Jia, Zh. H., Yin, H., Zhao, Y. H. and Zhao, H. K., “Solubility of
3-Bromo-4-Hydroxybenzaldehyde in 16 Monosolvents at Temperatures
from 278.15 to 323.15 K,” J. Chem. Eng. Data, 65,
287-295(2020).
63. Yang, Z. H., Shao, D. F. and Zhou, G. Q., “Solid–Liquid Equilibrium
of 5-Chloro-8-hydroxyquinoline and 5, 7-Dichloro-8-
hydroxyquinoline in Different Solvents and Mixing Properties
of Solutions,” J. Chem. Eng. Data, 64, 5057-5065(2019).
64. Wan, Y. M., Zhang, P. Sh., He, H. X., Sha, J., Yang, K. P., Li, T.
and Ren, B. Z., “Solid–Liquid Equilibrium Solubility, Thermodynamic
Properties, and Molecular Simulation of Phenylphosphonic
Acid in 15 Pure Solvents at Different Temperatures,” J.
Chem. Eng. Data, 64, 5142-5159(2019).
65. Kodide, K., Asadi, P. and Thati, J., “Solubility and Thermodynamic
Modeling of Sulfanilamide in 12 Mono Solvents and 4
Binary Solvent Mixtures from 278.15 to 318.15 K,” J. Chem.
Eng. Data, 64, 5196-5209(2019).
66. Wu, K. and Li, Y. J., “Solubility Measurement and Thermodynamic
Modeling for o-Toluenesulfonamide in 16 Solvents from
T = 273.15 to 323.85 K,” J. Chem. Eng. Data, 64, 5238-5247
(2019).
67. Wu, Zh. Y., Li, W. L., Yu, P., Fan, X. Y., Sun, H., Zhao, H. and
Zhang, Y., “Measurement and Correlation of Solubility of Marbofloxacin
in 12 Pure Solvents from 283.15 to 328.15 K,” J.
Chem. Eng. Data, 64, 5275-5281(2019).
68. Wu, Y. F., Wu, Ch. M., Yan, S. Y. and Hu, B., “Solubility Determination
of 2-Chloronicotinic Acid and Analysis of Solvent
Effect,” J. Chem. Eng. Data, 64, 5578-5583(2019).
69. Yang, Z. H., Shao, D. F. and Zhou, G. Q., “Solubility Measurement
and Thermodynamic Model Correlation of Sancycline in
12 Pure Solvents,” J. Chem. Eng. Data, 64, 5665-5670(2019).
70. Liu, F., Qu, H. B., Wan, X. X., Han, D. D., Li, W. L. and Wu, S.
G., “Solubility and Data Correlation of β-Arbutin in Different
Monosolvents from 283.15 to 323.15 K,” J. Chem. Eng. Data,
64, 5688-5697(2019).
71. Wu, J. X., Wang, J., Farajtabar, A. and Zhao, H. K., “Solubility
and Solution Thermodynamics of 2,6-Dichloro-4-nitroaniline in
12 Pure Solvents at Temperatures from 278.15 to 323.15 K,” J.
Chem. Eng. Data, 64, 5869-5877(2019).
72. Zhao, X., Han, G. and Zhao, H. K., “Thermodynamic Solubility
and Mixing Properties of Phenformin in 14 Pure Solvents at
Temperatures Ranging from 278.15 to 323.15 K,” J. Chem. Eng.
Data, 64, 6009-6019(2019).
73. Yao, M. H., Li, W. L., Shi, P., Li, W. Y., Wang, L. Y., Zhou, L.
N. and Tang, W. W., “Solid–Liquid Phase Equilibrium and Thermodynamic
Analysis of N,N′-Diethylthiourea in Different Solvent
Systems,” J. Chem. Eng. Data, 64, 6031-6040(2019).
74. Zhu, Y. W., Chen, X., Luo, T., Wang, W., Chen, H., Zhao, J., Li,
R. R. and Han, D. M., “Solubility of Gastrodin in Pure and Mixed
Solvents at 273.15–313.15 K and Its Correlation with Different
Thermodynamic Models,” J. Chem. Eng. Data, 64, 4223-4229
(2019).
75. Liu, J. Q., Ji, L., Gao, Q., Pan, H. Y., Feng, R. X. and Tang, Y.
F., “Solubility Measurement and Correlation of 2-Oxindole in 12
Pure Organic Solvents,” J. Chem. Eng. Data, 64, 4247-4255(2019).
76. Li, Sh. Sh., Yin, F. and Rui, D. Ch., “Binary Equilibrium Solubility
of Amidinothiourea in Monosolvents: Experimental Determination,
Model Correlation, and Solvent Effect Analysis,” J.
Chem. Eng. Data, 64, 4390-4397(2019).
77. Fan, Y. W., Zhu, W. J., Hu, Y. H., Yang, W. G., Xu, Q., Liu, X.
X. and Heng, B., “The Research and Measurement about the
Solubility of l-Serine in Eight Common Pure Solvents and Four Binary Mixed Solvents for T = (278.15–333.15) K,” J. Chem.
Eng. Data, 64, 4398-4411(2019).
78. Li, F. Zh., Zhao, G. M., Deng, Zh. M., Hu, Y. H. and Yang, W.
G., “Solubility Measurement and Modeling of 3-Hydroxy-2-nitropyridine
in Ten Pure Solvents and Two Binary Mixed Solvents
for T = (278.15–318.15) K,” J. Chem. Eng. Data, 64, 4518-4524
(2019).
79. Zhang, Zh. Ch., Qu, Y. X., Li, M. M., Wang, Sh. and Wang, J.
D., “Solubility and Thermodynamic Modeling of Dimethyl
Terephthalate in Pure Solvents and the Evaluation of the Mixing
Properties of the Solutions,” J. Chem. Eng. Data, 64, 4565-4579
(2019).
80. Xu, J., Li, P., Chen, X. F., Wang, H. P. and Ning, L. F., “Measurement
and Correlation of the Solubility of Dienogest in Twelve
Pure and Water + Methanol Binary Solvents at Temperatures from
273.15 to 318.15 K,” J. Chem. Eng. Data, 64, 4580-4591(2019).
81. Wu, K. and Li, Y. J., “Solubility Measurement and Phase Equilibrium
Modeling of 2-Aminobenzamide in 15 Pure Solvents,”
J. Chem. Eng. Data, 64, 3951-3959(2019).
82. He, Zh. C., Zhang, J. Y., Gao, X., Tang, T., Yin, X. F., Zhao, J.,
Li, R. R. and Han, D. M., “Solubility Determination, Correlation,
and Solute–Solvent Molecular Interactions of 5-Aminotetrazole
in Various Pure Solvents,” J. Chem. Eng. Data, 64, 3988-3993
(2019).
83. Yang, Z. H., Shao, D. F. and Zhou, G. Q., “Solubility Determination
and Thermodynamic Mixing Properties of 5-Methyl-2-
pyrazinecarboxylic Acid in Different Solvents,” J. Chem. Eng.
Data, 64, 4046-4053(2019).
84. Wang, J., Du, Y. Q. and Xu, R. J., “Solubility and Solution Thermodynamics
of 3-Nitrophthalonitrile in 12 Neat Solvents at
Temperatures from 278.15 to 323.15 K,” J. Chem. Eng. Data, 64,
3250-3259(2019).
85. Wang, L., Yang, W. G., Song, Y. Y. and Gu, Y. Y., “Solubility
Measurement, Correlation, and Molecular Interactions of 3-Methyl-
6-nitroindazole in Different Neat Solvents and Mixed Solvents
from T = 278.15 to 328.15 K,” J. Chem. Eng. Data, 64, 3260-
3269(2019).
86. Song, Y. Y., Xia, Y. Ch., Wang, L., Gu, Y. Y., Yang, W. G., Sheng,
H. C. and Hu, Y. H., “Solubility Study of (2E)-1-(3-Pyridyl)-3-
(dimethylamino)-2-propen-1-one in Different Pure Solvents and
Binary Solvent Mixtures from 278.15 to 328.15 K,” J. Chem.
Eng. Data, 64, 3280-3289(2019).
87. Xu, Q., Heng, B., Hu, Y. H., Liu, X. X., Yang, W. G., Fan, Y. W.,
Zhu, W. J., Wu, Ch. Q. and Gu, Y. Y., “Thermodynamic Models
for Determination of Solid–Liquid Equilibrium of the Buprofezin
in Pure and Binary Organic Solvents,” J. Chem. Eng. Data,
64, 3356-3366(2019).
88. Xie, Y., Li, D. M., Wang, Y. Y., Yang, Z. Y., Zhang, D. J. and
Wang, H. Y., “Solubility Determination and Thermodynamic
Modeling of 2-Mercaptobenzimidazole in 12 Solvents from
T = 278.15 K to T = 318.15 K,” J. Chem. Eng. Data, 64, 3385-
3391(2019).
89. Shao, D. F., Yang, Z. H. and Zhou, G. Q., “Solubility Measurement
and Thermodynamic Model Correlation of 5-Nitrosalicylaldehyde
in Different Solvents, J. Chem. Eng. Data, 64, 3444-
3449(2019).
90. Fang, X., Li, H. X., Zou, Z. P. and Xu, L., “Determination and
Correlation of the Solubility of Musk Ketone in Pure and Binary
Solvents at 273.15–313.15 K,” J. Chem. Eng. Data, 64, 3556-
3568(2019).
91. Li, Sh. Sh., Yin, F. and Rui, D. Ch., “Measurement of the Solubility
of Diclazuril and Discussion of the Effect of the Cosolvent,”
J. Chem. Eng. Data, 64, 3585-3591(2019).
92. Li, Y. J., Wu, K. and Liang, L., “Solubility Determination, Modeling,
and Thermodynamic Dissolution Properties of Benzenesulfonamide
in 16 Neat Solvents from 273.15 to 324.45 K,” J.
Chem. Eng. Data, 64, 3606-3616(2019).
93. Wu, J. X., Wang, J., Farajtabar, A. and Zhao, H. K., “Solubility
Study and Mixing Property of 3,5-Dinitro-2-methylbenzoic Acid
in 13 Pure Solvents from 288.15 to 333.15 K,” J. Chem. Eng.
Data, 64, 3652-3660(2019).
94. Wang, Sh., Xi, Sh. Sh., Qu, Y. X. and Wang, J. D., “Measurement
and Correlation of Solubility of Hydrochlorothiazide in Monosolvents
and Binary Solvent Mixtures from 283.15 to 323.15
K,” J. Chem. Eng. Data, 64, 3128-3138(2019).
95. Wang, H. R., Wang, X. Ch., Chen, G. Q., Farajtabar, A., Zhao,
H. K. and Li, X. B., “o-Nitrophenylacetonitrile Solubility in Several
Pure Solvents: Measurement, Correlation, and Solvent Effect
Analysis,” J. Chem. Eng. Data, 64, 2867-2876(2019).
96. Wu, J. X., Wang, J. and Zhao, H. K., “Solubility of d-Aspartic
Acid in Several Neat Solvents: Determination, Modeling, and
Solvent Effect Analysis,” J. Chem. Eng. Data, 64, 2904-2910
(2019).
97. Xu, R. J. and Wang, J., “Solubility Measurement and Thermodynamic
Model Correlation and Evaluation of 2-Chloro-5-nitroaniline
in 12 Pure Solvents,” J. Chem. Eng. Data, 64, 1357-1365
(2019).
98. De la Rosa, M. V. G., Santiago, R., Romero, J. M., Duconge, J.,
Monbaliu, J.-C., López-Mejías, V. and Stelzer, T., “Solubility
Determination and Correlation of Warfarin Sodium 2Propanol
Solvate in Pure, Binary, and Ternary Solvent Mixtures,” J. Chem.
Eng. Data, 64, 1399-1413(2019).
99. Xu, J., Li, P., Chen, X. F., Wang, H. P. and Ning, L. F., “Measurement
and Correlation of the Solubility of Mifepristone in
Eight Pure and Water + Methanol Mixed Solvents at Temperatures
from 273.15 to 318.15 K,” J. Chem. Eng. Data, 64, 1469-
1479(2019).
100. Yang, Z. H., Shao, D. F. and Zhou, G. Q., “Solubility in Different
Solvents, Correlation, and Solvent Effect in the Solvent
Crystallization Process of Iohexol,” J. Chem. Eng. Data, 64,
1515-1523(2019).
101. Ouyang, J. B., Na, B., Zhou, L. M., Liu, Zh. R., Xiao, S. J. and
Hao, H. X., “Determination and Modeling of Solubility of 4-
Aminobenzamide in Different Pure Solvents,” J. Chem. Eng.
Data, 64, 1569-1576(2019).
102. Jin, Zh. D., Du, C. B., Dong, R. M., Xue, Y., Qiao, B., Zhang,
Y., Ye, T. T. and Wang, M. L., “Binary Solid–Liquid Solubility
Determination and Model Correlation of Quizalofop-p-ethyl in
Different Pure Solvents,” J. Chem. Eng. Data, 64, 1611-1621
(2019).
103. Wu, K. and Li, Y. J., “Solid–Liquid Equilibrium of Azacyclotridecan-
2-one in 15 Pure Solvents from T = 273.15 to 323.15
K: Experimental Determination and Thermodynamic Modeling,”
J. Chem. Eng. Data, 64, 1640-1649(2019).
104. Wang, L., Sun, J. P., Hua, Y. W., Xu, L. and Liu, G. J., “Measurement
and Correlation of the Solubility of 2-Cyanoacetamide
in 14 Pure Solvents and the Mixing Properties of Solutions,” J.
Chem. Eng. Data, 64, 1680-1692(2019).
105. Ban, H., Zhang, Y. D., Cheng, Y. W., Wang, L. J. and Li, X.,
“Solubilities of 2,6-Dimethylnaphthalene in Six Pure Solvents
and Two Binary Solvent Systems,” J. Chem. Eng. Data, 64, 1705-
1712(2019).
106. Zhu, A. F., Hong, K., Zhu, F. X., Dai, B. L., Xu, J. M. and
Zhao, W., “Solubility, Model Correlation, and Solvent Effect of
2-Amino-3-methylbenzoic Acid in 12 Pure Solvents,” J. Chem.
Eng. Data, 64, 1713-1724(2019).
107. Shao, D. F., Yang, Z. H. and Zhou, G. Q., “Solubility Determination
of 1,5-Naphthalenediamine and 1,8-Naphthalenediamine
in Different Solvents and Mixing Properties of
Solutions,” J. Chem. Eng. Data, 64, 1770-1779(2019).
108. Li, R. R., Zhan, Sh. Y., Chen, G., Jin, Y. X., Yu, B. B., Zhao, J.,
Han, D. M. and Fan, H. J., “Equilibrium Solubility, Model Correlation,
and Solvent Effect of Indole-3-acetic Acid in Twelve
Pure Solvents,” J. Chem. Eng. Data, 64, 1802-1808(2019).
109. Chen, J. J., He, J. J., Li, N. X., Zheng, H. D. and Zhao, S. Y.,
“Determination and Correlation of Solubility of Borneol, Camphor,
and Isoborneol in Different Solvents,” J. Chem. Eng. Data,
64, 1826-1833(2019).
110. Lesitha, G. and Thomas, P. Y., “Estimation of the Scale Parameter
of a Log-logistic Distribution,” Metrika, 76, 427-448(2013).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로