Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 3, 2024
Revised July 11, 2024
Accepted July 11, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
인공세포 개발을 위한 상향식 합성생물학
Bottom-up Synthetic Approach to Develop Artificial Cells
Abstract
세포는 40억년전에 처음 탄생하였으며, 오랜 기간동안 진화하며 발전해온 우수한 시스템이다. 상향식 합성생물학
(bottom-up synthetic biology)은 40억년전으로 돌아가 세포를 기초부터 다시 설계하는 접근법으로 “인공세포(artificial
cell)”를 개발하는 연구분야이다. 이렇게 개발된 인공세포는 비록 완벽한 세포는 아니지만 세포의 중요한 특징들을 보
유한 인공적인 세포 유사(cell mimicry) 시스템이다. 인공세포를 설계함으로써 이 분야의 연구자들은 기존의 세포생물
학과는 다른 접근법으로 세포의 체계와 근원을 탐구하고, 나아가서 살아있는 세포의 이용을 대체하고자 하는 목표를
가진다. 본 총설에서는 최근 활발히 연구되고 있는 캡슐 및 생물촉매 기반의 인공세포에 대한 개념 및 이 분야의 최신
연구들을 소개하고자 한다.
Cells first emerged 4 billion years ago and have evolved over a long period into an excellent system.
Bottom-up synthetic biology is a research field that aims to develop “artificial cells” by returning to 4 billion years ago
and redesigning cells from scratch. Although these artificial cells are not perfect, they are artificial cell mimicry systems
that possess important characteristics of living cells. By designing the artificial cells, researchers in this field aim to
explore the organization and the origins of cells from a different approach than traditional cell biology and ultimately
seek to replace the use of living cells. This review aims to introduce the concepts and recent research in capsule and
biocatalyst-based artificial cells, which have been actively studied recently.
References
“Constraining the Time Interval for the Origin of Life on Earth,”
Astrobiology 18(3), 343-364(2018).
2. Xu, Q., Zhang, Z., Lui, P. P. Y., Lu, L., Li, X. and Zhang, X.,
“Preparation and Biomedical Applications of Artificial Cells,”
Mater. Today Bio, 23, 100877(2023).
3. Salehi-Reyhani, A., Ces, O. and Elani, Y., “Artificial Cell Mimics
as Simplified Models for the Study of Cell Biology,” Exp.
Biol. Med., 242(13), 1309-1317(2017).
4. Oparin, A. I., “The Origin of Life”, Translation by Ann Synge.
In: Bernal, J. D. (Ed.), “The Origin of Life,” Weidenfeld & Nicolson,
London, 199-249(1967).
5. Küchler, A., Yoshimoto, M. Luginbühl, S., Mavelli, F. and Walde,
P., “Enzymatic Reactions in Confined Environments,” Nat. Nanotech.,
11, 409-420(2016).
6. López-García, P., Eme, L. and Moreira, D., “Symbiosis in Eukaryotic
Evolution,” J. Theor. Biol., 434, 20-33(2017).
7. Lamparter, L. and Galic, M., “Cellular Membranes, a Versatile
Adaptive Composite Material,” Front. Cell Dev. Biol., 8, 684
(2020).
8. Burk, J., Melzer, M., Hagen, A., Lips, K. S., Trinkaus, K., Nimptsch,
A. and Leopold, J., “Phospholipid Profiles for Phenotypic
Characterization of Adipose-Derived Multipotent Mesenchymal
Stromal Cells,” Front. Cell Dev. Biol., 9, 784405(2021).
9. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. and Landfester,
K., “Liposomes and Polymersomes: a Comparative Review
Towards Cell Mimicking,” Chem. Soc. Rev., 47, 8572-8610(2018).
10. Jiang, S., Caire da Silva, L., Ivanov, T., Mottola, M. and Landfester,
K., “Synthetic Silica Nano‐Organelles for Regulation of
Cascade Reactions in Multi‐Compartmentalized Systems,”
Angew. Chem. Int. Ed., 61(6), e202113784(2022).
11. Elani, Y., Law, R. V. and Ces, O., “Vesicle-based Artificial Cells
as Chemical Microreactors with Spatially Segregated ReactionPathways,” Nat. Comm., 5, 5305(2014).
12. Jo, S.-M., Wurm, F. R. and Landfester, K., “Biomimetic Cascade
Network Between Interactive Multicompartments Organized by
Enzyme-Loaded Silica Nanoreactors,” ACS Appl. Mater. Interf.,
10(40), 34230-34237(2018).
13. Seo, H. and Lee, H., “Programmable Enzymatic Reaction Network
in Artificial Cell-Like Polymersomes,” Adv. Sci. https://
doi.org/10.1002/advs.202305760 (2024) (online publication).
14. Martino, C., Kim, S.-H., Horsfall, L., Abbaspourrad, A., Rosser,
S. J., Cooper, J. and Weitz, D. A., “Protein Expression, Aggregation,
and Triggered Release from Polymersomes as Artificial
Cell-like Structures,” Angew. Chem. Int. Ed., 51(26), 6416-6420
(2012).
15. Huang, X., Li, M., Green, D. C., Williams, D. S., Patil A. J. and
Mann, S., “Interfacial Assembly of Protein–polymer Nano-conjugates
Into Stimulus-responsive Biomimetic Protocells,” Nat.
Comm., 4, 2239(2013).
16. Huang, X., Patil, A. J., Li, M. and Mann, S., “Design and Construction
of Higher-Order Structure and Function in Proteinosome-
Based Protocells,” J. Am. Chem. Soc., 136(25), 9225-9234
(2014).
17. Kurihara, K., Tamura, M., Shohda, K.-I., Toyota, T., Suzuki, K.
and Sugawara, T., “Self-reproduction of Supramolecular Giant
Vesicles Combined with the Amplification of Encapsulated
DNA,” Nat. Chem., 3, 775-781(2011).
18. Melchiors, M. de S., Ivanov, T., Harley, I., Sayer, C., Araújo, P.
H. H., Silva, L. C. da, Ferguson, C. T. J. and Landfester, K., “Membrane
Manipulation of Giant Unilamellar Polymer Vesicles
with a Temperature-Responsive Polymer,” Angew. Chem. Int.
Ed., 61(39), e202207998(2022).
19. Zharova, T. V., Grivennikova, V. G. and Borisov, V. B., “F1·Fo
ATP Synthase/ATPase: Contemporary View on Unidirectional
Catalysis,” Int. J. Mol. Sci., 24(6), 5417(2023).
20. Otrin, L., Marušič, N., Bednarz, C., Vidaković-Koch, T., Lieberwirth,
I., Landfester, K. and Sundmacher, K., “Toward Artificial
Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer
and Hybrid Membranes,” Nano Lett., 17(11), 6816-6821(2017).
21. Wu, H., Tian, C., Song, X., Liu, C., Yang, D. and Jiang, Z., “Methods
for the Regeneration of Nicotinamide Coenzymes,” Green
Chem., 15, 1773-1789(2013).
22. Jo, S.-M., Wurm, F. R. and Landfester, K., “Enzyme-Loaded
Nanoreactors Enable the Continuous Regeneration of Nicotinamide
Adenine Dinucleotide in Artificial Metabolisms,” Angew.
Chem. Int. Ed., 60(14), 7728-7734(2021).
23. Jo, S.-M., Zhang, K.A.I., Wurm, F. R. and Landfester, K., “A
Mimic of the Cellular Antioxidant Defense System for a Sustainable
Regeneration of Nicotinamide Adenine Dinucleotide (NAD),”
ACS Appl. Mater. Interfaces 12(23), 25625-25632(2020).
24. Wei, W., Mazzotta, F., Lieberwirth, I., Landfester, K., Ferguson,
C. T. J. and Zhang, K. A. I., “Aerobic Photobiocatalysis Enabled by
Combining Core–Shell Nanophotoreactors and Native Enzymes,”
J. Am. Chem. Soc., 144(16), 7320-7326(2022).