Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 23, 2024
Revised May 28, 2024
Accepted June 12, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석
Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC
Abstract
탄소 중립 사회로의 전환을 위해 전체 온실가스 배출량의 86.8%를 차지하는 에너지 생산 부문에서의 이산화탄소 배
출량 감축이 필요하다. 현재 우리나라는 총 발전량의 60%를 석탄과 천연가스에 의존하고 있으며 이를 풍력, 태양광
등의 재생에너지로 대체하는 방법은 에너지 수급이 불안정하고 비용이 높다는 단점이 있다. 이를 해결하기 위해 본 연
구에서는 기존에 사용되고 있는 NGCC(Natural Gas Combined Cycle) 공정을 기반으로 천연가스, 암모니아, 수소를 혼
합하여 연소한다는 해결책을 제시하였다. 시뮬레이션을 수행한 결과, 이산화탄소 배출량을 효과적으로 줄일 수 있었으
며 천연가스만을 연료로 이용해 얻은 전력량과 비교하였을 때 34%~238%의 전력을 얻었다. 천연가스, 암모니아, 수소
의 질량분율에 대한 사례연구를 수행한 결과, 암모니아 비율이 증가할수록 발전량과 NOx 배출량은 감소하였고 수소
비율이 증가할수록 발전량과 NOx 배출량은 증가하였다. 본 연구는 추후 다양한 혼합 연료의 조합 및 경제성 평가 등
혼합 연료 발전 분야의 가이드라인이 될 수 있을 것이다.
The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total
greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South
Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of
unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas,
ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2
emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions
of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional
to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of
various fuel mixtures and economic analysis in co-firing power generation.
References
International Journal of Economic and Political Integration,
1(2), 21-34(2011).
2. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C.B.,
Frieler, K., Knutti, R., Frame, D. J. and Allen, M. R., “Greenhousegas
Emission Targets for Limiting Global Warming to 2 °C,
Nature, 458(7242), 1158-1162(2009).
3. Jomekian, A., Bazooyar, B., “Activated Carbon from Municipal
Waste for Enhanced CO2/CH4 Membrane Separation: Experimental,
Modeling and Simulation, Korean J. Chem. Eng., 40(9),
2102-2118(2023).
4. Rashidi, H., Azimi, H. and Rasouli, P., “Carbon Dioxide Absorption
by Ammonia-promoted Aqueous Triethanolamine Solution
in a Packed Bed,” Korean J. Chem. Eng., 40(9), 2282-2292(2023).
5. Azizi, N., Jahanmahin, O., Homayoon, R., Khajouei, M., “A New
Ternary Mixed-matrix Membrane (PEBAX/PEG/MgO) to Enhance
CO2/CH4 and CO2/N2 Separation Efficiency,” Korean J. Chem.
Eng., 40(6), 1457-1473(2023).
6. Wang, J., Lv, X., Huang, L., Li, L., Li, X. and Zhang, J., “Construction
of Amphiphilic Networks in Blend Membranes for
CO2 Separation,” Korean J. Chem. Eng., 40(1), 175-184(2023).
7. Verma, S., Bhagat, P., Gahlyan, S., Rani, M., Kumar, N., Malik,
R. K., Lee, Y. and Maken, S., “Thermophysical Properties of Nisopropyl-
2-propanamine+alkanol (C1-C3) Mixtures as Absorbents
for Carbon Dioxide Capture,” Korean J. Chem. Eng., 40(9),
2293-2302(2023).
8. Lee, Z. H., Sethupathi, S., Lee, K. T., Bhatia, S. and Mohamed,
A. R., “An Overview on Global Warming in Southeast Asia:
CO2 Emission Status, Efforts Done, and Barriers,” Renew. Sust.
Energ., 28, 71-81(2013).
9. Cho, S., Kim, M., Lee, J., Han, A., Na, J. and Moon, I., “Multiobjective
Optimization of Explosive Waste Treatment Process
Considering Environment via Bayesian Active Learning,” Eng
Appl Artif Intell, 117, 105463(2023).
10. Cho, S., Lim, J., Cho, H., Yoo, Y., Kang, D. and Kim, J., “Novel
Process Design of Desalination Wastewater Recovery for CO2
and SOX Utilization,” Chem. Eng. J., 433, 133602(2022).
11. Cho, S., Kang, D., Kwon, J. S. Il, Kim, M., Cho, H., Moon, I.
and Kim, J., “A Framework for Economically Optimal Operation
of Explosive Waste Incineration Process to Reduce NOx Emission
Concentration,” Mathematics., 9(17), 2174(2021).
12. Park, S., Shin, Y., Jeong, E. and Han, M., “Techno-economic
Analysis of Green and Blue Hybrid Processes for Ammonia
Production,” Korean J. Chem. Eng., 40(11), 2657-2670(2023).
13. Kobayashi, H., Hayakawa, A., Somarathne, K. D. K. A. and Okafor,
E. C., “Science and Technology of Ammonia Combustion,” Proc.
Combust. Inst., 37(1), 109-133(2019).
14. Lee, H., Woo, Y. and Lee, M. J., “The Needs for R&D of Ammonia
Combustion Technology for Carbon Neutrality - Part II R&D Trends
and Technical Feasibility Analysis,” Journal of The Korean Society
of Combustion, 26(1), 84-106(2021).
15. Gómez-García, M. A., Pitchon, V. and Kiennemann, A., “Pollution
by Nitrogen Oxides: An Approach to NOx Abatement by Using
Sorbing Catalytic Materials,” Environment International, 31(3),
445-467(2005).
16. Lee, G., Lee, Y., Kim, Y.-J., Han, B., Kim, S. B., Park, I., Lee, G.,
Park, H., Hong, K.-J. and Kim, J., “Simultaneous Removal of NOx
and SOx with Wet Scrubber using CaCO 3-based KI Absorbent,”
Journal of Energy & Climate Change, 18(1), 50-60(2023).
17. Jung, Y. J., Kim, B. S., Jeong, B., Kim, H. D., Won, J. M., Cha,
K. and Cha, J. S., “Thermal Regeneration Characteristics of
Titanium Isopropoxide-modified TiO2 for the Removal of Environmentally
Hazardous NOx in Iron Ore Sintering Process,”
Korean J. Chem. Eng., 40(4), 714-721(2023).
18. Kim, D., “Review on the Development Trend of Hydrogen Gas
Turbine Combustion Technology,” Journal of The Korean Society
of Combustion, 24(4), 1-10(2019).
19. Shin, Y. and Cho, E.-S., “Numerical Study on H2 Enriched NG
Lean Premixed Combustion,” Journal of The Korean Society of
Combustion, 26(1), 51-58(2021).
20. Armaroli, N. and Balzani, V., “The Hydrogen Issue,” ChemSus-
Chem, 4(1), 21-36(2011).
21. Lee, H., Lim, J. and Kim, J., “Novel Lithium Production Process
Using Desalination Wastewater and Waste Heat From Natural Gas
Combined Cycle,” Energy Convers Manag, 292, 117396(2023).
22. Yan, J. Y., Handbook of Clean Energy System, Vol. 5, John
Wiley & Sons Ltd, Chichester, U.K(2015).
23. Darrow, K., Tidball, R., Wang, J. and Hampson, A., “Catalog ofCHP Technologies,” U.S. Environmental Protection Agency CHP
Partnership (2014).
24. De Giorgi, M. G., Sciolti, A. and Ficarella, A., “Application and
Comparison of Different Combustion Models of High Pressure
LOX/CH4 Jet Flames,” Energies, 7(1), 477-497(2014).
25. Shin, K., Cho, H., Shim, S. and Jee, S., “Shock Tube and Modeling
Study of the Formation and the Reduction of Nitrogen
Oxides; Ammonia Oxidation,” Journal of the Korean Society of
Combustion, 4(1), 59-65(1999).
26. Berwal, P., Shawnam, Kumar, S., “Laminar Burning Velocity
Measurement of CH4/H2/NH3-air Premixed Flames at High Mixture
Temperatures,” Fuel. 331, 125809(2023).
27. Yasiry, A., Wang, J., Zhang, L., Abdulraheem, A. A. A., Cai, X.
and Huang, Z., “An Experimental Study on H2/NH3/CH4-air
Laminar Propagating Spherical Flames at Elevated Pressure and
Oxygen Enrichment,” Int J Hydrogen Energy. 58, 28-39(2024).
28. Li, R., Konnov, A. A., He, G., Qin, F. and Zhang, D., “Chemical
Mechanism Development and Reduction for Combustion of
NH3/H2/CH4 Mixtures,” Fuel. 257, 116059(2019).
29. Wang, S., Wang, Z. and Roberts, W. L., “Measurements and
Simulations on Effects of Elevated Pressure and Strain Rate on
NOx Emissions in Laminar Premixed NH3/CH4/air and NH3/H2/
air Flames,” Fuel. 357, 130036(2024).
30. The Engineering ToolBox, Optimal Combustion Processes - Fuel
vs. Excess Air, Available at https://www.engineeringtoolbox.com/
fuels-combustion-efficiency-d_167.html, (2003).
31. The Engineering ToolBox, Combustion Efficiency and Excess
Air, Available at https://www.engineeringtoolbox.com/boiler-combustion-
efficiency-d_271.html, (2003).
32. Li, B., Sun, S., Zhang, L., Feng, D., Zhao, Y., Wang, P., Wu, J.,
Qiu, P., Zhang, F. and Qin, Y., “System Modification and Thermal
Efficiency Study on the Semi-closed Cycle of Supercritical
Carbon Dioxide,” Energy Convers Manag. 241, 114272(2021).
33. Habib, M., Esquino, A. M., Hughes, R., Soepyan, F. B., Nemetz,
L. R., Zhang, Z., Haque, M. E., Luebke, D. R., Lipscomb, G. G.,
Matuszewski, M. S., Bhattacharyya, D. and Hornbostel, K. M.,
“Flexible Carbon Capture Using MOF Fixed Bed Adsorbers at
an NGCC Plant,” Carbon Capture Science and Technology. 10,
100170(2024)
34. Ishihara, S., Zhang, J. and Ito, T., “Numerical Calculation with
Detailed Chemistry of Effect of Ammonia co-firing on NO
Emissions in a Coal-fired Boiler,” Fuel. 266, 116924(2020).
35. Ishihara, S., Zhang, J. and Ito, T., “Numerical Calculation with
Detailed Chemistry on Ammonia co-firing in a Coal-fired Boiler:
Effect of Ammonia co-firing Ratio on NO Emissions,” Fuel.
274, 117742(2020).
36. Ahmad, A. H., Darmanto, P. S. and Juangsa, F. B., “Thermodynamic
Analysis of Ammonia co-firing for Low-rank Coal-fired Power
Plant,” International Journal of Sustainable Energy. 42, 527-544
(2023).
37. Mutlu, Ö. Ç. and Zeng, T., “Challenges and Opportunities of
Modeling Biomass Gasification in Aspen Plus: A Review,” Chem
Eng Technol. 43, 1674-1689(2020).
38. Ahmad, A. H., Darmanto, P. S. and Juangsa, F. B., “Thermodynamic
Study on Decarbonization of Combined Cycle Power Plant,”
Journal of Engineering and Technological Sciences. 55, 613-
626(2023).
39. Lee, J., Jung, M., Kwon, Y., Lee, G. and Shon, B., “Simulation
of the Flue Gas Treatment Processes of An Industrial-waste Incinerator
Using Aspen Plus,” Journal of the Korea Academia-Industrial
Cooperation Society. 10, 3246-3252(2009).
40. Lee, S., The hybrid SNCR/SCR optimization for NOx removal
of steam boiler in petrochemical process, (2023).
41. Rao, A., Liu, Y. and Ma, F., “Numerical Simulation of Nitric Oxide
(NO) Emission for HCNG Fueled SI Engine by Zeldovich’, Prompt
(HCN) and Nitrous Oxide (N2O) Mechanisms Along with the Error
Reduction Novel Sub-models and Their Classification Through
Machine Learning Algorithms,” Fuel, 333, 126320(2023).
42. Bayramoğlu, K., Bahlekeh, A. and Masera, K., “Numerical Investigation
of the Hydrogen, Ammonia and Methane Fuel Blends on
the Combustion Emissions and Performance,” Int. J. Hydrogen
Energy, 48, 39586-39598(2023).
43. Li, J., Huang, H., Kobayashi, N., He, Z. and Nagai, Y., “Study
on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics
and NOx Formation,” Int. J. Energy. Res., 38, 1214-1223
(2014).
44. Harper, J., Cloyd, S., Pigon, T., Thomas, B., Wilson, J., Johnson, E.
and Noble, D. R., Hydrogen Co-Firing Demonstration at Georgia
Power’s Plant mcdonough: M501G Gas Turbine, Turbomachinery
Technical Conference and Exposition, June, USA(2023).