Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 24, 2024
Revised July 5, 2024
Accepted July 5, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
정전기적 자가결합법으로 제조된 2차원 티타늄 카바이드(MXene)/실리콘 음극 복합소재의 전기화학적 특성
Electrochemical Characteristics of 2-Dimensional Titanium Carbide(MXene)/Silicon Anode Composite Prepared by Electrostatic Self-assembly
Abstract
본 연구에서는 고성능 리튬이온전지용 음극 소재로써 2차원 구조의 티타늄 카바이드(MXene)와 나노 실리콘의 정
전기적 결합을 통한 MXene/Si 음극 복합소재를 제조하였다. LiF/HCl을 이용하여 Ti3AlC2 MAX를 에칭해 Ti3C2Tx
MXene을 제조하였으며, 정전기적 결합을 형성하기 위해 나노 실리콘의 표면을 CTAB (Cetyltrimethylammonium
bromide)을 활용하여 양전하로 대전하였다. MXene/Si 음극 복합소재는 제조된 MXene과 대전 된 실리콘의 간단한 혼
합 공정을 통해 성공적으로 제조되었다. 제조된 복합소재의 물리적 특성과 전기화학적 특성을 MXene과 실리콘의 조
성비에 따라 조사하였으며, 전극의 안정성을 평가하기 위해 충·방전 사이클 후의 전극 표면을 분석하였다. MXene/Si
복합소재는 MXene 대비 실리콘 조성 비율이 2, 3 및 4로 증가할수록 1962.9, 2395.2 및 2504.3 mAh/g의 높은 초기
방전용량을 나타내었다. MXene과 실리콘 조성비가 1 : 4인 MXene/Si-4는 100 사이클에서 1387.5 mAh/g의 가역 용량과
74.5%의 용량 유지율을 나타내었으며, 4.0 C의 높은 율속에서도 700.5 mAh/g으로 높은 용량을 발현하였다. 이러한 결
과를 통해 정전기적 결합으로 제조된 MXene/Si 복합소재는 고성능 리튬이온배터리용 음극소재로 적용 될 수 있다.
In this study, the MXene/Si composite was prepared by electrostacic assembly with 2-dimensional structured
titanium carbide (MXene) and nano silicon for anode material of high-performance lithium-ion battery. Ti3C2Tx MXene
was synthesized by etching the Ti3AlC2 MAX with LiF/HCl, and the surface of nano silicon was charged to positively
using CTAB (Cetyltrimethylammonium bromide). The MXene/Si anode composite was successfully manufactured by simple
mixing process of synthesized MXene and charged silicon. The physical and electrochemical properties of prepared
composite were investigated with MXene-silicon composition ratio, and the surface of electrode after cycles was analyzed to
evaluate stability of the electrode. The MXene/Si composites demonstrated high initial discharge capacities of 1962.9,
2395.2 and 2504.3 mAh/g as the silicon composition ratio increased to 2, 3 and 4 compared to MXene, respectively.
MXene/Si-4, which is MXene and silicon ratio with 1 : 4, exhibited 1387.5 mAh/g of reversible capacity, 74.5% of capacity
retention at 100 cycles and high capacity of 700.5 mAh/g at high rate of 4.0 C. As the results, the MXene/Si composite
prepared by electrostatic-assenbly could be applied to anode materials for high-performance LIBs.
References
J., “Zero-strain High Capacity Silicon/carbon Anode Enabled by
a MOF-derived Space-confined Single-atom Catalytic Strategy
for Lithiun-ion Batteries,” Adv. Mater., 34(21), 2200894(2022).
2. Qiao, Y., Hu, Y., Liu, W., Zhang, H., Shang, H., Qu, M., Peng, G.
and Xie, Z., “Synergistic Carbon Coating of MOF-derived Porous
Carbon and CNTs on Silicon for High Performance Lithium-ion
Batteries,” J. Electroanal. Chem., 888, 115014(2021).
3. Feng, K., Li, M., Liu, W., Kashkooli, A., Xiao, X., Cai, M. and
Chen, Z., “Silicon-Based Anodes for Lithium-Ion Batteries: From
Fundamentals to Practical Applications,” Small, 14(8), 1702737
(2018).
4. Bitew, Z., Tesemma, M., Beyene, Y. and Amare, M., “Nano-structured
Silicon and Silicon Based Composites as Anode Materials
for Lithium Ion Batteries: Recent Progress and Perspectives,”
Sustainable Energy and Fuels, 6(4), 1014-1050(2022).
5. Luo, W., Chen, X., Xia, Y., Chen, M., Wang, L., Wang, Q., Li,
W. and Yang, J., “Surface and Interface Engineering of Silicon-
Based Anode Materials for Lithium-Ion Batteries,” Adv. EnergyMater., 7(24), 1701083(2017).
6. Zhang, T., Pan, L., Tang, H., Du, F., Guo, Y., Qiu, T. and Yang, J.,
“Synthesis of Two-dimensional Ti3C2Tx MXene Using HCl+LiF
Etchant: Enhanced Exfoliation and Delamination,” J. Alloys and
Compd., 695, 818-826(2017).
7. Li, X., Wang, C., Cao, Y. and Wang, G., “Functional MXene
Materials: Progress of Their Applications,” Chemistry–An Asian
Journal, 13(19), 2742-2757(2018).
8. Tian, Y., An, Y. and Feng, J., “Flexible and Freestanding Silicon/
MXene Composite Papers for High-Performance Lithium-Ion
Batteries,” ACS. Appl. Mater. Inter., 11(10), 10004-10011(2019).
9. Yan, Y., Zhao, X., Dou, H., Wei, J., Sun, Z., He, Y., Dong, Q.,
Xu, H. and Yang, X., “MXene Frameworks Promote the Growth
and Stability of LiF-Rich Solid-Electrolyte Interphases on Silicon
Nanoparticle Bundles,” ACS Appl. Mater. Inter., 12(16), 18541-
18550(2020).
10. Zhang, Y., Mu, Z., Lai, J., Chao, Y., Yang, Y., Zhou, P., Li, Y., Yang,
W., Xia, Z. and Guo, S., “MXene/Si@SiOx@C Layer-by-layer
Superstructure with Autoadjustable Function for Superior Stable
Lithium Storage,” ACS Nano, 13(2), 2167-2175(2019).
11. Zhang, F., Jia, Z., Wang, C., Feng, A., Wang, K., Hou, T., Liu, J.,
Zhang, Y. and Wu, G., “Sandwich-like Silicon/Ti3C2Tx MXene
Composite by Electrostatic Self-assembly for High Performance
Lithium Ion Battery,” Energy, 195, 117047(2020).
12. Kim, Y., Kim, S., Seo, D., Chae, Y., Anayee, M., Lee, Y., Gogotsi, Y.,
Ahn, C. and Jung, H., “Etching Mechanism of Monoatomic Aluminum
Layers during MXene Synthesis,” Chem. Mater., 33(16), 6346-
6355(2021).
13. Naslund, L., Persson, P. and Rosen, J., “X-ray Photoelectron Spectroscopy
of Ti3AlC2, Ti3C2Tz and TiC Provides Evidence for the
Electrostatic Interaction Between Laminated Layers in Max-phase
Materials,” J. Phys. Chem. C, 124(50), 27732-27742(2020).
14. Zhou, H., Zhang, J., Liu, J., Feng, S., Li, C., Marsili, E. and
Zhang, X., “Silicon Nanospheres Supported on Conductive MXene
Nanosheets as Anodes for Lithium-Ion Batteries,” ACS Appl. Energy
Mater., 6(1), 160-169(2023).
15. Cui, Y., Wang, J., Wang, X., Qin, J. and Cao, M., “A Hybrid
Assembly of MXene with NH2−Si Nanoparticles Boosting Lithium
Storage Performance,” Chem.-Asian J., 15(8), 1376-1383(2020).
16. Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P., Simon,
P., Barsoum, M. and Gogotsi, Y., “MXene: A Promising Transition
Metal Carbide Anode for Lithium-ion Batteries,” Electrochem.
Commun., 16(1), 61-64(2012).
17. Choi, N., Kim, E., Yeom, H. and Lee, J., “Effect of Binder and
Electrolyte on Electrochemical Performance of Si/CNT/C Anode
Composite in Lithium-ion Battery,” Korean Chem. Eng. Res., 60(30),
1-7(2022).
18. An, Y., Tian, Y., Zhang, Y., Wei, C., Tan, L., Zhang, C., Cui, N.,
Xiong, S., Feng, J. and Qian, Y., “Two-Dimensional Silicon/Carbon
from Commercial Alloy and CO2 for Lithium Storage and Flexible
Ti3C2Tx MXene-Based Lithium-Metal Batteries,” ACS Nano, 14(12),
17574-17588(2020).
19. Ding, N., Xum, J., Yao, Y., Wegner, G., Lieberwirth, O. and Chen,
C., “Improvement of Cyclability of Si as Anode for Li-ion Batteries,”
J. Power Sources, 192(2), 644-651(2009).
20. Nangir, M., Massoudi, A. and Tayebifard, S., “Investigation of the
Lithium-ion Depletion in the Silicon-silicon Carbide Anode/electrolyte
Interface in Lithium-ion Battery via Electrochemical Impedance
Spectroscopy,” J. Electroanal. Chem., 873, 114385(2020).
21. Paloukis, F., Elmasides, C., Farmakis, F., Selinis, P., Neophytides,
S. and Georgoulas, N., “Electrochemical Impedance Spectroscopy
Study in Micro-grain Structured Amorphous Silicon Anodes for
Lithium-ion Batteries,” J. Power Sources, 331, 285-292(2016).
22. Yang, H., Jiang, T. and Zhou, Y., “Enhanced Lithium Storage
Performance in Si/MXene Porous Composites,” Inorganics, 11(7),
279(2023).